Virtual World consistency: a new consistency condition for STMs

Damien IMBS
damien.imbs@irisa.fr

PhD advisor: Michel RAYNAL

Workshop What Theory for Transactional Memories?

ASAP team, IRISA, Rennes, FRANCE
Summary

- Comparison between databases and STMs
- A first condition specific to STMs: Opacity
- Similarities between STMs and message-passing systems
- Virtual World consistency
- Conclusion
Comparison between databases and STMs
Comparison between databases and STMs (1)

- Transactions are sets of reads, writes and local computations that can commit or abort (they can abort in order to allow concurrency).
- In databases, requirements are placed only on committed transactions.
- Relational algebra is not expressive enough to allow aborted transactions to be problematic.
- Usually, serializability or strict serializability (linearizability) are required from committed transactions.
Comparison between databases and STMs (2)

- STMs are general purpose: divisions by 0, infinite loops are possible
- Example without constraints on aborted transactions:
 - Initially, $A = 2$ and $B = 1$.
 - $A = B$ defines an inconsistent state of the shared memory.

Transaction 1:

(1) $A \leftarrow A \times 2; \quad B \leftarrow B \times 2$

Transaction 2:

(2a) $z \leftarrow A$
(2b) $c \leftarrow 1/(z - B)$

- If (2a), (1), (2b), Transaction 2 will execute a division by 0 before aborting
A first condition specific to STMs: Opacity
A first criterion: Opacity (1)

Goal

- These problems can be solved by sandboxing, but at a high cost
- The goal of opacity is to forbid a transaction to read a set of values that is not consistent, avoiding the need to sandbox transactions
- It has first been introduced informally by Dice, Dolev and Shavit and has then been named and formalized by Guerraoui and Kapałka

Dice D., Shalev O. and Shavit N., Transactional Locking II, DISC’06.
• Intuitively, opacity requires that, when excluding the write operations of aborted transactions, the set of all transactions be linearizable

• Opacity prevents transactions from reading an inconsistent set of values, but also forces transactions that will abort to read mutually consistent sets of values

• It is sufficient but not necessary:

The same goal can be attained with a weaker criterion
Similarities between STMs and message-passing systems
Similarities with message-passing systems (1)

- Transactions can be seen as groups of “receive” and “send” events, where values are seen as messages.
Similarities with message-passing systems (2)

- In a given STM execution, we define the partial order \rightarrow_{PO} as follows. $T_1 \rightarrow_{\text{PO}} T_2$ if:
 - **Process order:** both T_1 and T_2 are issued by the same process, and T_1 is a committed transaction issued before T_2
 - **Read-from relation:** there is an object X whose value written by T_1 has been read by T_2 – equivalent to the message exchange relation
 - **Transitivity:** $\exists T : (T_1 \rightarrow_{\text{PO}} T) \land (T \rightarrow_{\text{PO}} T_2)$
 - Note: an aborted transaction doesn’t have any successor in the \rightarrow_{PO} relation
- \rightarrow_{PO} is the STM equivalent of the “happen before” relation (causal order) in message-passing systems
Causal past of a transaction

- The *causal past* of a transaction \(T \), denoted \(\text{past}(T) \), is the set including \(T \) and all the \(T' \) such that \(T' \rightarrow_{PO} T \).

Note: if \(T \) is an aborted transaction, it is the only aborted transaction contained in \(\text{past}(T) \).
Virtual World consistency
Virtual World consistency

- The goal is to obtain a consistency criterion weaker than opacity, but that also prevents transactions from reading an inconsistent set of values.
- The idea is that different aborted transactions don’t have to observe the same witness sequential execution.
- Virtual world consistency still requires that the set of committed transactions be linearizable.
- For each aborted transaction T, the requirement is that $\text{past}(T)$ accepts a legal linearization that respects \rightarrow_{PO}.

Example

- T'_1 sees T^2_1 before T^2_2 – it reads y’s value from T^1_2
- T'_2 sees T^2_2 before T^2_1 – it reads x’s value from T^1_1
- But considered individually, each transaction observes a consistent state of the shared memory
Virtual World vs Opacity

- Virtual world consistency allows committing more transactions than opacity

With opacity, T_1 must be aborted (T_4 sees T_2 before T_1).
- With virtual world consistency, T_1 can be committed.
<table>
<thead>
<tr>
<th>Comparison with databases</th>
<th>Opacity</th>
<th>Message-passing</th>
<th>Virtual World</th>
<th>Conclusion</th>
</tr>
</thead>
</table>

Conclusion
Conclusion

- Virtual world consistency: a valid and useful consistency criterion
- A new view on STM systems