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Regular TV: everything HD

Live streaming

A source produces multimedia content

n viewers (n large)

broadcasting

…

…
…

IP TV, Web TV, P2P TV, …

vs 192K requests/day
78K users/day

244K simultaneous users (incl. VoD)

BBC iStats (April 2010)
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Live streaming

• Stream rate s [kbps]
• n viewers want to receive s

Demand = Supply

t0 t1 t2 t3

Content split into 
chunks

dissemination

time-critical large
ordered

multimedia content

…

n viewers (n large)
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Natural solution

Participants are pure consumer

... scalability …

IP Multicast

• “Centralized” solution
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Context of this thesis

• “Decentralized” solution

Participants collaborate
…most of them!
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Environment

• Large-scale

• Constrained bandwidth
– Asymmetric (e.g., ADSL)

failures

leave

join
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Existing approaches

s1

s1

s2/2s2/2

s2

s3

s1 is constrained by 
design

Disconnection

Build/maintain
tree

Upload of nodes:
multiple of s2/z

Partial disconnection

Build/maintain
z trees

s3 optimal

Connected is not enough

Peer selection,
Packet scheduling

Single tree Multiple trees Mesh
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Beyond mesh: Gossip

• Gossip-based dissemination

Node picks fanout partners at random
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Beyond mesh: Gossip

• Gossip-based dissemination

2

2

4

2

3
2

Great for small updates (e.g., databases)
Duplicates are a problem for large content…
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Gossip for live streaming

1. Gossip content location
– Propose chunk ids

– to fanout partners
– every gossip period

1. Request (chunk ids)

2. Serve chunks (payload)

Fanout modulates contribution of nodes
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Mesh vs Gossip

t

. . . . . .

. . . . . .

= = =

= = =

Gossip, f = 2

Peering degree =|view| = 4
BitTorrent default is 50 (e50 = 5.18 · 1021)

View:

View:
(≥fanout)
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Gossip – Theory

1. fanout = ln(n) + c
P[connected graph] goes to exp(-exp(-c))

2. Holds as long as the fanout is ln(n) + c on average

0

0.2

0.4

0.6

0.8

1

ln(n)-10 ln(n)-5 ln(n) ln(n)+5 ln(n)+10

c=1 → 69%

c=2 → 87% c=3 → 95%

c=-1 → 7%

c=0 → 37%

Paul Erdős & Alfréd Rényi 

Fanout
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h]
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Experimental Setup

Grid’5000 PlanetLab

Nodes 200 (40*5) 230-300

BW cap Token bucket (200KB) Throttling

Transport layer UDP + losses (1-5%) UDP

Stream rate s 680 kbps 551 kbps

FEC 5% 10%

Stream (incl. FEC) 714 kbps 600 kbps

Tg (gossip period) 200 ms 200-500 ms

fanout (f) 8 7-8

source’s fanout 5 7

Retransmission ARQ/Claim ARQ

Membership RPS (Cyclon) and full membership

En
vi

ro
nm

en
t

G
os

sip
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Evaluation Metrics

• Stream lag

– Time difference between creation at the source 
and delivery to the clients’ player

• Stream quality
– Maximum 1% jitter means at least 99% of the 

groups are complete
• Incomplete groups does not mean “blank”

vs

t
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Percentage of nodes receiving at least 99% of the stream

Gossip – Practice

PlanetLab nodes have:
• Large bandwidths
• Small delays

Stream lag (s)

PlanetLab (230)
s = 600 kbps

f = 7
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• Observations
• Gossip++

Constrained 
environment

• HEAPHeterogeneous 
environment

• LiFTPresence of 
freeriders

Live Streaming with Gossip
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Stretching Gossip

Fanout

Proactiveness
How often should a node change its fanout partners?

The larger the better?

… in a constrained environment
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Fanout

offline viewing
20s lag
10s lag

Optimal fanout
PlanetLab (230)

700 kbps cap
s = 600 kbps

Increasing fanout
• Theory

– More robust
– Faster dissemination

• Practice
– Heavily requested nodes 

exceed their bandwidth
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Change partner every X gossip period(s)

offline viewing
20s lag
10s lag

Optimal proactiveness

∞

PlanetLab (230)
700 kbps cap
s = 600 kbps

f = 7

Different dissemination 
tree for each chunk:
• Ultimate way of 

splitting the stream
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• Observations
• Gossip++

Constrained 
environment

• HEAPHeterogeneous 
environment

• LiFTPresence of 
freeriders

Contributions
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Gossip++
Observations:
• Fanout has an optimal value/range
• Change partners every gossip period

– Ultimate way of splitting the stream

0
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0.2
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PD
F

Fanin

Message loss
M

sg
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ss

How to receive a chunk 
that is not even 

proposed?

How to exploit the 
many duplicates?
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Gossip++: Codec & Claim

to player

p Group G (k+c)

i

G contains k chunks

decode(G)

recode(G)

inject reconstructed chunks
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Gossip++: Codec & Claim
u v pq

t

t/2

request(12)
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• Observations
• Gossip++

Constrained 
environment

• HEAPHeterogeneous 
environment

• LiFTPresence of 
freeriders

Contributions
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• Proposals arrive randomly
– Nodes pull from first proposal

• Highly-dynamic

Gossip is load-balancing… S

p1

q

p2

p3

S q
S

q

Node q will serve f nodes whp Node q will serve f nodes wlp

. . .
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… but the world is heterogeneous!

Load-balancing

Capability

3 classes (691kbps avg):

512kbps
85%

3Mbps
5%

1Mbps
10% 0
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Stream lag (s)
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least 99% of the stream

Standard gossip – 691kbps

No cap

Standard gossip – flat 691 kbps

36



vs

How to cope with heterogeneity?

• Goal: contribute according to capability

• Propose more = serve more
– Increase fanout…

… and decrease it too!

• Such that
– average fanout (favg) ≥ initial fanout = ln(n) + c
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Heterogeneous Gossip - HEAP

• q and r with bandwidths bq > br
– q should upload bq / br times as much as r

• Who should increase/decrease its contribution?
… and by how much?

• How to ensure reliability?
– How to keep favg constant?

Capability
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HEAP

• Total/average contribution is equal in both 
homogeneous and heterogeneous settings

fq = finit · bq /bavg

…ensuring the average fanout is constant and 
equal to finit = ln(n) + c

bavg

Capability
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HEAP

• Get bavg with (gossip) aggregation
– Advertize own and freshest received capabilities
– Aggregation follows change in the capabilities

• Get n with (gossip) size estimation
– Estimation follows change in the system

• Join/leave
• Crashes
• …
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Quality improvement

• Stream lag of 10s
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Stream lag

• For those who can have a jitter-free stream
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20% nodes crashing
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• Observations
• Gossip++

Constrained 
environment

• HEAPHeterogeneous 
environment

• LiFTPresence of 
freeriders

Contributions
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Freeriders

• Selfish participants
– Maximize benefit
– Minimize contribution
– Avoid to be detected
– May collude

• Attacks on Tit-for-Tat protocols
– Opportunistic unchoking

• Can get without giving anything in return
– (e.g., Large-view exploit, etc)
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Freeriding Gossip

• Reduce fanout

• Propose less chunks than received

• Serve less chunks than requested

• Bias partner selection (colluders)
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Architecture

p

Managers of p

serve serve

check actions

blame

check actions

blame

blacklist

blacklist

blacklist

Check/update p’s score
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LiFT: direct verifications

• Direct check
– Requested chunks are served

• Cross-checking
– Served chunks are proposed

p1 p3p2

served 22 ?

propose(12,22)

request(22)

propose(22,…)
I proposed 22 to p3

Did p2 propose 22?

yes/no
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Attacking the direct verifications

• Colluder-in-the-middle

q p

serve

I don’t propose
I proposed … to m

m

Did p propose …?

yes
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LiFT: a posteriori verifications

• Statistical check
– Partners chosen at random

• Verification on both fanin/fanout histories

p1,p3,p5
p0,p4,p7
p2,p3,p5

History

n h
en

tir
es

fr
eq

ue
nc

y
node

Entropy, χ2, 
Kolmogorov-Smirnov
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LiFT: scores

• Absolute scores
– Need to be compensated
– Message loss = wrongful blames

-50 -40 -30 -20 -10 0 10

score
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er
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honest
freeriders
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LiFT: evaluation
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score

honest nodes
freeriders

25s 30s 35s

Cross-checking and blaming overhead

pcc 0 0.5 1

674 kbps 1.07% 4.53% 8.01%

1082kbps 0.69% 3.51% 5.04%

2036 kbps 0.38% 1.69% 2.76%

54

PlanetLab (300)



Constrained 
environment

Observations
• Optimal fanout

value/range
• Optimal proactiveness

Gossip++
• Codec + Claim
• Tolerance to freeriders

Heterogeneous 
environment

HEAP
• Bandwidth 

measurement
• Fanout adaptation

• Preserved simplicity
• Preserved reliability
• Preserved Efficiency

Presence of 
freeriders

LiFT
• Lightweight
• Simple
• Secures asymmetric 

exchanges

Summary of results
Live Streaming with Gossip? Yes
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Open problems

Gossip++ Chunk priorities
Dissemination 

tree 
prediction

HEAP Do more with 
bavg

Different 
adaptation
• pacc

LiFT Punishing vs
revoking

Heterogeneous 
environment Oracle & spies
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Thank you


