
Live Streaming with Gossip

Maxime Monod
June 30, 2010

Regular TV: everything HD

Live streaming

A source produces multimedia content

n viewers (n large)

broadcasting

…

…
…

IP TV, Web TV, P2P TV, …

vs 192K requests/day
78K users/day

244K simultaneous users (incl. VoD)

BBC iStats (April 2010)
2

Live streaming

• Stream rate s [kbps]
• n viewers want to receive s

Demand = Supply

t0 t1 t2 t3

Content split into
chunks

dissemination

time-critical large
ordered

multimedia content

…

n viewers (n large)

3

Natural solution

Participants are pure consumer

... scalability …

IP Multicast

• “Centralized” solution

4

Context of this thesis

• “Decentralized” solution

Participants collaborate
…most of them!

5

Environment

• Large-scale

• Constrained bandwidth
– Asymmetric (e.g., ADSL)

failures

leave

join

6

Existing approaches

s1

s1

s2/2s2/2

s2

s3

s1 is constrained by
design

Disconnection

Build/maintain
tree

Upload of nodes:
multiple of s2/z

Partial disconnection

Build/maintain
z trees

s3 optimal

Connected is not enough

Peer selection,
Packet scheduling

Single tree Multiple trees Mesh

7

Beyond mesh: Gossip

• Gossip-based dissemination

Node picks fanout partners at random

8

Beyond mesh: Gossip

• Gossip-based dissemination

Beyond mesh: Gossip

• Gossip-based dissemination

Beyond mesh: Gossip

• Gossip-based dissemination

Beyond mesh: Gossip

• Gossip-based dissemination

Beyond mesh: Gossip

• Gossip-based dissemination

Beyond mesh: Gossip

• Gossip-based dissemination

Beyond mesh: Gossip

• Gossip-based dissemination

2

4

2

2
2

Beyond mesh: Gossip

• Gossip-based dissemination

2

4

2

2
2

Beyond mesh: Gossip

• Gossip-based dissemination

2

4

2

2
2

Beyond mesh: Gossip

• Gossip-based dissemination

2

2

4

2

3
2

Great for small updates (e.g., databases)
Duplicates are a problem for large content…

18

Gossip for live streaming

1. Gossip content location
– Propose chunk ids

– to fanout partners
– every gossip period

1. Request (chunk ids)

2. Serve chunks (payload)

Fanout modulates contribution of nodes

19

Mesh vs Gossip

t

.

.

= = =

= = =

Gossip, f = 2

Peering degree =|view| = 4
BitTorrent default is 50 (e50 = 5.18 · 1021)

View:

View:
(≥fanout)

20

Gossip – Theory

1. fanout = ln(n) + c
P[connected graph] goes to exp(-exp(-c))

2. Holds as long as the fanout is ln(n) + c on average

0

0.2

0.4

0.6

0.8

1

ln(n)-10 ln(n)-5 ln(n) ln(n)+5 ln(n)+10

c=1 → 69%

c=2 → 87% c=3 → 95%

c=-1 → 7%

c=0 → 37%

Paul Erdős & Alfréd Rényi

Fanout

P[
co

nn
ec

te
d

gr
ap

h]

21

Experimental Setup

Grid’5000 PlanetLab

Nodes 200 (40*5) 230-300

BW cap Token bucket (200KB) Throttling

Transport layer UDP + losses (1-5%) UDP

Stream rate s 680 kbps 551 kbps

FEC 5% 10%

Stream (incl. FEC) 714 kbps 600 kbps

Tg (gossip period) 200 ms 200-500 ms

fanout (f) 8 7-8

source’s fanout 5 7

Retransmission ARQ/Claim ARQ

Membership RPS (Cyclon) and full membership

En
vi

ro
nm

en
t

G
os

sip

22

Evaluation Metrics

• Stream lag

– Time difference between creation at the source
and delivery to the clients’ player

• Stream quality
– Maximum 1% jitter means at least 99% of the

groups are complete
• Incomplete groups does not mean “blank”

vs

t

23

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60

Pe
rc

en
ta

ge
 o

f n
od

es
 (C

D
F)

Percentage of nodes receiving at least 99% of the stream

Gossip – Practice

PlanetLab nodes have:
• Large bandwidths
• Small delays

Stream lag (s)

PlanetLab (230)
s = 600 kbps

f = 7

24

• Observations
• Gossip++

Constrained
environment

• HEAPHeterogeneous
environment

• LiFTPresence of
freeriders

Live Streaming with Gossip

25

Stretching Gossip

Fanout

Proactiveness
How often should a node change its fanout partners?

The larger the better?

… in a constrained environment

26

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

Pe
rc

en
ta

ge
 o

f n
od

es
 v

ie
w

in
g

th
e

st
re

am
w

ith
 le

ss
 th

an
 1

%
 ji

tt
er

Fanout

offline viewing
20s lag
10s lag

Optimal fanout
PlanetLab (230)

700 kbps cap
s = 600 kbps

Increasing fanout
• Theory

– More robust
– Faster dissemination

• Practice
– Heavily requested nodes

exceed their bandwidth

27

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000

Pe
rc

en
ta

ge
 o

f n
od

es
 v

ie
w

in
g

th
e

st
re

am
w

ith
 le

ss
 th

an
 1

%
 ji

tt
er

Change partner every X gossip period(s)

offline viewing
20s lag
10s lag

Optimal proactiveness

∞

PlanetLab (230)
700 kbps cap
s = 600 kbps

f = 7

Different dissemination
tree for each chunk:
• Ultimate way of

splitting the stream

28

• Observations
• Gossip++

Constrained
environment

• HEAPHeterogeneous
environment

• LiFTPresence of
freeriders

Contributions

29

Gossip++
Observations:
• Fanout has an optimal value/range
• Change partners every gossip period

– Ultimate way of splitting the stream

0

0.05

0.1

0.15

0.2

0 1 2 3 4 5 6 7 8 9 10 11

PD
F

Fanin

Message loss
M

sg
lo

ss

How to receive a chunk
that is not even

proposed?

How to exploit the
many duplicates?

30

Gossip++: Codec & Claim

to player

p Group G (k+c)

i

G contains k chunks

decode(G)

recode(G)

inject reconstructed chunks

31

Gossip++: Codec & Claim
u v pq

t

t/2

request(12)

32

0

200

400

600

800

1000

1200

1400

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Ba
nd

w
id

th
 u

sa
ge

 o
f n

on
-fr

ee
rid

in
g

no
de

s

Pe
rc

en
ta

ge
 o

f n
od

es
 (C

D
F)

Percentage of freeriders

Nodes viewing a clear stream (10s stream lag)

ARQ
Claim
ARQ (BW)
Claim (BW)

Gossip++ with freeriders
Grid’5000 (200)

1000 kbps cap
s = 714 kbps (5% FEC)

33

• Observations
• Gossip++

Constrained
environment

• HEAPHeterogeneous
environment

• LiFTPresence of
freeriders

Contributions

34

• Proposals arrive randomly
– Nodes pull from first proposal

• Highly-dynamic

Gossip is load-balancing… S

p1

q

p2

p3

S q
S

q

Node q will serve f nodes whp Node q will serve f nodes wlp

. . .

35

… but the world is heterogeneous!

Load-balancing

Capability

3 classes (691kbps avg):

512kbps
85%

3Mbps
5%

1Mbps
10% 0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60

Pe
rc

en
ta

ge
 o

f n
od

es
 (C

DF
)

Stream lag (s)

Percentage of nodes receiving at
least 99% of the stream

Standard gossip – 691kbps

No cap

Standard gossip – flat 691 kbps

36

vs

How to cope with heterogeneity?

• Goal: contribute according to capability

• Propose more = serve more
– Increase fanout…

… and decrease it too!

• Such that
– average fanout (favg) ≥ initial fanout = ln(n) + c

37

Heterogeneous Gossip - HEAP

• q and r with bandwidths bq > br
– q should upload bq / br times as much as r

• Who should increase/decrease its contribution?
… and by how much?

• How to ensure reliability?
– How to keep favg constant?

Capability

38

HEAP

• Total/average contribution is equal in both
homogeneous and heterogeneous settings

fq = finit · bq /bavg

…ensuring the average fanout is constant and
equal to finit = ln(n) + c

bavg

Capability

39

HEAP

• Get bavg with (gossip) aggregation
– Advertize own and freshest received capabilities
– Aggregation follows change in the capabilities

• Get n with (gossip) size estimation
– Estimation follows change in the system

• Join/leave
• Crashes
• …

40

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60

Pe
rc

en
ta

ge
 o

f n
od

es
 (C

D
F)

Stream lag (s)

Percentage of nodes receiving at least 99% of the stream

Stream lag reduction

Standard gossip – 691kbps

HEAP – 691kbps

No cap

Standard gossip – flat 691kbps

41

Quality improvement

• Stream lag of 10s

0

10

20

30

40

50

60

70

80

90

100

Standard Gossip HEAP

Jitter-free percentage of the stream

512kbps
1Mbps
3Mbps

42

Stream lag

• For those who can have a jitter-free stream

0

5

10

15

20

25

30

35

40

45

Standard Gossip HEAP

Average stream lag to obtain a jitter-free stream

512kbps

1Mbps

3Mbps

St
re

am
 la

g
(s

)

43

0

512

1024

1536

2048

2560

3072

Standard Gossip HEAP

Average bandwidth usage by bandwidth class

512kbps

1Mbps

3Mbps

Proportional contribution

99
.8

9%

91
.5

6% 48
.4

4%

94
.3

8%

90
.5

8%

87
.5

6%

44

20% nodes crashing

0

20

40

60

80

100

0 30 60 90 120 150

Pe
rc

en
ta

ge
 o

f n
od

es
 re

ce
iv

in
g

ea
ch

 g
ro

up
Failure of 20% of the nodes at time t=60s

HEAP - 12s lag
Standard Gossip - 20s lag
Standard Gossip - 30s lag

Stream time (s) 45

• Observations
• Gossip++

Constrained
environment

• HEAPHeterogeneous
environment

• LiFTPresence of
freeriders

Contributions

46

Freeriders

• Selfish participants
– Maximize benefit
– Minimize contribution
– Avoid to be detected
– May collude

• Attacks on Tit-for-Tat protocols
– Opportunistic unchoking

• Can get without giving anything in return
– (e.g., Large-view exploit, etc)

47

Freeriding Gossip

• Reduce fanout

• Propose less chunks than received

• Serve less chunks than requested

• Bias partner selection (colluders)

48

Architecture

p

Managers of p

serve serve

check actions

blame

check actions

blame

blacklist

blacklist

blacklist

Check/update p’s score

49

LiFT: direct verifications

• Direct check
– Requested chunks are served

• Cross-checking
– Served chunks are proposed

p1 p3p2

served 22 ?

propose(12,22)

request(22)

propose(22,…)
I proposed 22 to p3

Did p2 propose 22?

yes/no
50

Attacking the direct verifications

• Colluder-in-the-middle

q p

serve

I don’t propose
I proposed … to m

m

Did p propose …?

yes

51

LiFT: a posteriori verifications

• Statistical check
– Partners chosen at random

• Verification on both fanin/fanout histories

p1,p3,p5
p0,p4,p7
p2,p3,p5

History

n h
en

tir
es

fr
eq

ue
nc

y
node

Entropy, χ2,
Kolmogorov-Smirnov

52

LiFT: scores

• Absolute scores
– Need to be compensated
– Message loss = wrongful blames

-50 -40 -30 -20 -10 0 10

score

av
er

ag
e

honest
freeriders

53

LiFT: evaluation
Fr

ac
tio

n
of

 n
od

es

0

0.2

0.4

0.6

0.8

1

-60 -40 -20 0 20

score

honest nodes
freeriders

25s 30s 35s

Cross-checking and blaming overhead

pcc 0 0.5 1

674 kbps 1.07% 4.53% 8.01%

1082kbps 0.69% 3.51% 5.04%

2036 kbps 0.38% 1.69% 2.76%

54

PlanetLab (300)

Constrained
environment

Observations
• Optimal fanout

value/range
• Optimal proactiveness

Gossip++
• Codec + Claim
• Tolerance to freeriders

Heterogeneous
environment

HEAP
• Bandwidth

measurement
• Fanout adaptation

• Preserved simplicity
• Preserved reliability
• Preserved Efficiency

Presence of
freeriders

LiFT
• Lightweight
• Simple
• Secures asymmetric

exchanges

Summary of results
Live Streaming with Gossip? Yes

55

Open problems

Gossip++ Chunk priorities
Dissemination

tree
prediction

HEAP Do more with
bavg

Different
adaptation
• pacc

LiFT Punishing vs
revoking

Heterogeneous
environment Oracle & spies

56

Thank you

