Democratizing Transactional Programming

Vincent Gramoli Rachid Guerraoui
NICTA and University of Sydney EPFL

Errata: Figure 5 of the printed copy of the CACM paper has a wrong
scale on the y-axis, the online version as well as the current version
correct this. The number of precluded schedules in Figure 3 is actually
3 out of 20, hence 15% (instead of 20%).

1 A Brief History of Transactions

The transaction abstraction encapsulates the mechanisms used to synchro-
nize the accesses to data shared by concurrent processes. The abstraction
dates back to the 70’s when it was proposed in the context of databases
to ensure the consistency of shared data [7]. This consistency was deter-
mined with respect to a sequential behavior through the concept of serial-
izability [25]: concurrent accesses need to behave as if they were executing
sequentially—in other words, they must be atomic. Since then, researchers
have derived other variants (like isolation [30] and opacity [13]) applicable
to different transactional contexts.

Knight 1986 Felber et al. 2009
Almes et al. 1985, Liskov 1985 Harris et al. 2005
Liskov and Scheifler 1982 __\ Herlihy et al. 2003 —i\ \

70's. . . 80s. ‘. 90's . ob's © 10

Eswaran et al. 1976 / Guerraoui et al. 1992 —y - /
Papadimitriou 1979 —/Herlihy and Moss 1993 Dragojevi¢ et al. 2011
Shavit and Touitou 1995

Figure 1: A brief history of transactions

The transaction abstraction was considered for the first time as a pro-
gramming language construct in the form of guards and actions in [22]. Then
it was adapted to various programming models, e.g., Argus [21], Eden [1]
and ACS [12]. The first hardware support for a transactional construct was
proposed in [19]. It basically introduced parallelism in functional languages
by providing synchronization for multiple memory words. Later, the no-
tion of transactional memory was proposed in the form of hardware support
for concurrent programming to remedy the difficulties of using locks, e.g.,
priority inversion, lock-convoying and deadlocks [18] (cf. Figure 1).

Since the advent of multicore architectures, the very notion of trans-
actional memory has become an active topic of research!. Hardware im-
plementations of transactional systems [18] turned out to be limited by
specific constraints the programmer could only “abstract away” from us-
ing unbounded hardware transactions. Purely hardware implementations
are however complex solutions that most industrials are no longer explor-
ing. Instead, a hybrid approach was adopted by implementing a best-effort
hardware component that needs to be complemented by software transac-
tions [4].

Software transactions were originally designed as a reusable and compos-
able solution to execute a set of shared memory accesses fixed prior to the
execution [29]. Later, they were applied to handle the case where the control
flow was not predetermined [17]. Early investigations on the performance
of software transactions questioned their ability to leverage multicore archi-
tectures [2]. Those results were however revisited in [6], where it was shown
that a highly optimized STM, with manually instrumented benchmarks and
explicit privatization, whose throughput can still outperform sequential code
by up to 29 times on SPARC with 64 concurrent threads and by up to 9 times
on x86 with 16 concurrent threads. Nonetheless, performance remains the
main obstacle preventing the wide adoption of the transaction abstraction
for general purpose concurrent programming.

In short, and as we show in this paper, in their classic form, transactions
prevent us from extracting the same level of concurrency possible with more
primitive synchronization techniques. This is folklore knowledge, yet we
show for the first time and through a simple example, that this is inherent
to the transaction concept in its classic form and is irrespective of how it
is used. One can view this limitation as the price of bringing concurrency
to the masses and making it possible for average programmers to write
parallel programs that use shared data. However, some programmers are

"http://www.cs.wisc.edu/trans-memory/biblio/list.html.

concurrency experts and these might find it frustrating not to be able to use
their skills in enhancing concurrency and performance.

Not surprisingly, researchers have been exploring relaxations of the clas-
sic transaction model [23, 24, 27] that enable more concurrency. Neverthe-
less, it proved challenging to do so while keeping the simplicity of the original
model, namely, the ability to (1) preserve the original sequential code and
(2) compose applications devised by different programmers, possibly with
different skills.

We argue in this paper for mixing different transaction semantics within
the same application; strong semantics to be used by novice programmers
and weaker semantics to be used by concurrency experts. The challenge is
to make sure the polymorphic system mixing different semantics can still
enable to reuse code and compose it in a smooth manner. Before describing
how this can be addressed, it is important to have a closer look into the very
meaning of reuse and composition.

2 The Inherent Appeal of Transactions

The transaction paradigm is appealing for its simplicity as it preserves se-
quential code and promotes concurrent code composition.

Algorithm 1 An implementation of a linked list operation with transactions

1: tx-contains(val),:

2 int result;

3 node xprev, xnect;

4: transaction {

5: curr = set — head,;

6: next = curr — next;

7 while next — val < val do
8 curr = next;

9 next = curr — next;

10: result = (next — val == val);

11: }

12: return result;

2.1 Preserving sequentiality

Transactions preserve the sequential code in that their usage does not al-
ter it, besides segmenting it into several transactions. More precisely, the

regions of sequential code that must remain atomic in a concurrent con-
text are simply delimited, typically by a transaction{...} block as depicted in
Algorithm 1—the original structure depicted in Algorithm 2 (left) remains
unchanged.

Programming with transactions shifts the inherent complexity of concur-
rent programming to the implementation of the transaction semantics which
must be done once and for all. Thanks to transactions, writing a concurrent
application follows a divide-and-conquer strategy where experts have the
complex task of writing a live and safe transactional system with an unso-
phisticated interface so that the novice has simply to write a transaction-
based application, namely, delimit regions of sequential code.

Algorithm 2 The linked list node

1: Transactional structure node: 5. Lock-based structure node_lk:
2: intptr_t val; 6: intptr_tval;

3: struct node * next; 7: struct node_lk * next;

4: // Metadata management is implicit 8: wvolatile pthread_spinlock_t lock;

Traditional synchronization techniques generally require the program-
mer to first re-factorize the sequential code. Using lock-free techniques, the
programmer would typically need to use subtle mechanisms, like logical dele-
tion [14], to prevent inconsistent memory deallocations. Using lock-based
techniques, the programmer must usually declare and initialize explicitly all
locks before using them to protect memory accesses, as depicted in Algo-
rithm 2, Line 8.

The transaction abstraction hides both synchronization internals and
metadata management. If locks or timestamps are internally used, they
are declared and initialized transparently by the transactional system. All
memory accesses within a transaction block are transparently instrumented
by the transactional system as if they were wrapped. These wrappers can
exploit the metadata, locks and timestamps to detect conflicting accesses
and to potentially abort a transaction.

2.2 Enabling composition

Transactions allow Bob to compose existing transactional operations de-
veloped by Alice into a composite operation that preserves the safety and
liveness of its components [15] as depicted in Figure 2.

Alternative synchronization techniques do not facilitate composition.
Consider a simple directory abstraction mapping a name to a file. With

B rename(f1, f2)

remove(f1)
create(f2)

Alice

Figure 2: Bob composes Alice’s component operations remove and create
into a new operation rename that preserves the safety and liveness of its
components

transactions, one can compose the removal of a name and the creation of
a new name into a rename action. If a user renames a file from one direc-
tory dj to another directory do, while another user renames a file from ds to
di, directories must be protected to avoid deadlocks. In other words, Bob
must first understand the locking strategy of Alice to ensure the liveness
of his own operations. For this reason, the header of the Linux kernel file
mm/filemap.c comprises 50 lines of comments explaining the locking strat-
egy. Existing lock-free techniques are even more complex as they require
a multi-word compare-and-swap to make the two renaming actions atomic
while retaining concurrency [11].

In contrast, a transactional system detects a conflict between the two
renaming transactions and lets only one of the two resume and possibly
commit; the other one is restarted or resumed later. Deciding upon the con-
flict resolution strategy is the task of a dedicated service, called a contention
manager, for which various strategies and implementations have been pro-
posed [28].

3 The Inherent Limitations of Transactions

A transaction delimits a region of accesses to shared locations and pro-
tects the set of locations that is accessed in this region. By contrast, a
(fine-grained) lock generally protects a single location even though it is held
during a series of accesses as depicted in Algorithm 3. This is a crucial differ-
ence between transactions and locks in terms of expressiveness, concurrency
and performance.

Algorithm 3 An implementation of a linked list operation with locks

1: lk-contains(val),:

2 int result;

3 node_lk xprev, xnext;

4: lock(&set — head — lock);
5. curr = set — head;

6: lock(&curr — next — lock);
7 next = curr — next;

8 while next — val < val do
9 unlock(&curr — lock);

10: curr = next;

11: lock(&next — next — lock);
12: next = curr — next;

13: unlock(&curr — lock);

14: result = (next — val == val);

15: unlock(&next — lock);
16: return result;

3.1 Lacking expressiveness

To make our point that transactions are inherently limited in terms of ex-
pressiveness we define atomicity as a binary relation over shared memory ac-
cesses ™ and 7’ of a single transaction within an execution «: atomicity(w, ")
is true if 7 and 7’ appear in « as if they were both occurring at one
common indivisible point of the execution. It is important to notice that
this relation is not transitive, i.e., atomicity(m,m2) A atomicity(ma, 73) #
atomicity(mi,m3). In fact, as mo may appear to have executed at several
consecutive points of the execution, the points at which m and w9 appear
to have occurred may be disjoint from the points at which 79 and 73 appear
to have occurred.

A process locking x (with mutual exclusion) during the point interval
(p1;p2) of a, in which it accesses x, guarantees that any of its other accesses
during this interval will appear atomic with its access to x. For example, in
the following lock-based program where r(z) and w(x) denote respectively
read and write accesses to shared variable x, process (or more precisely
thread) P, guarantees atomicity(r(z),r(y)) and atomicity(r(y),r(z)) but
not atomicity(r(x),r(z)):

Py =lock(z) r(x) lock(y) r(y) unlock(x) lock(z) r(z) unlock(y) unlock(z).

Conversely, a process P, executing the following transaction

block ensures atomicity(r(z),r(y)), atomicity(r(y),r(z)) but also
atomicity(r(x),r(z)), which is the transitive closure of the atomicity
relations guaranteed by FP,. Using classic transactions, there is no way to
write a program with a semantics similar to Py, namely to ensure the two
former atomicity relations without also ensuring the latter.

P, = transaction{ r(z) r(y) r(2) }.

This lack of expressiveness is not related to the way transactions are used
but to the transaction abstraction itself. The open/close block somehow
blindly guarantees that all the accesses it encapsulates appear as if there
was an indivisible point in the execution where they all take effect.

3.2 Impact on concurrency

Not surprisingly, the low expressiveness of transactions translates into a con-
currency loss. For example, consider the transactional linked list program
depicted in Algorithm 1. Clearly, the value of the head — next pointer
observed by the transaction (Line 6) is no longer important when the trans-
action is checking whether the value val corresponds to a value of a node
further in the list (Line 7), yet a concurrent modification of head — next can
invalidate the transaction when reading next — val as transactions enforce
atomicity of all pairs of accesses; this is a false-conflict leading to unneces-
sary aborts. Conversely, the hand-over-hand locking program of Algorithm 3
allows such a concurrent update (Line 7) when checking the value (Line 8),
starting from the second iteration of the while-loop.

To quantify the impact of the limited expressiveness of transactions
on the number of accepted schedules, consider a concurrent program
where the process P, above executes concurrently with processes P =
transaction{w(x)} and P, = transaction{w(z)}. As there are four ways of
placing the single access of one of these two processes between accesses of P;
and five ways of placing the remaining one in the resulting schedule, there
are twenty possible schedules. Note that all are correct schedules of a sorted
linked list implementation.

However, most transactional memory systems guarantee that each of
their execution is equivalent to an execution where sequences of reads and
writes representing transactions are executed one after another (serializabil-
ity) in an order where no transaction terminating before another start is
ordered after (strictness). (This is actually often the case, as a large variety
of transactional memory systems ensure opacity [13] a consistency criterion
that is even stronger than this strict-serializability as it additionally requires

‘ I i Admitted

schedules

i Precluded
schedules

Figure 3: Transactions preclude 15% of the correct schedules of a simple
concurrent linked list program.

that non-committed transactions never observe an inconsistent state.) These
transactional memory systems actually preclude three of these schedules as
depicted in Figure 3: those in which P, accesses x before P, (P, is serialized
before Py, i.e., P, < Pi), P; terminates before P» starts (P, < P») and in
which P accesses z before P, (P < P;). This limitation translates here into
concurrency loss.

It is worth noting that one could exploit weaker transactional memory
systems to export these serializable histories [26, 10]. These would offer a
transaction that may not be appropriate for all possible usages. For example,
it would be possible that one transaction reads an inconsistent state before
aborting. In fact, the concurrency limitation stems from trying to provide
a unique but general-purpose transaction.

3.3 Impact on performance

The metadata management overhead of software transactions when starting,
accessing shared memory, and committing, is typically expected to be com-
pensated by exploiting concurrency [6]. In scenarios like the previous linked
list program where transactions fail to fully exploit all available concurrency,
their performance cannot compete with other synchronisation methodolo-
gies. Recall that this is due to the expressiveness limitation inherent to
transactions—it is thus not tied to the way transactions are used but to the
abstraction itself.

To illustrate the impact on performance, we compared the existing Java
concurrency package to the classic transaction library, TL2 [5], on a 64-
way Niagara 2 machine. Note that this is the Java implementation of the

={=Collection ***=Cl|assic transactions

4.5 —
35 (/

2.5 V4

Dz ~

<;//
05 - =

1 2 4 8 16 32 64
Number of threads

Normalized throughput
w

Figure 4: Throughput (normalized over the sequential one) of classic trans-
actions and the existing concurrent collection.

TL2 algorithm, it detects conflicts at the granularity of fields and is dis-
tributed within DeuceSTM [20]. We present the results obtained on a sim-
ple Collection benchmark of 2'2 elements providing contains, add, remove and
size operations with an update and a size ratios of 10% each. As the exist-
ing lock-free data structures do not support atomic size we had to use the
copyOnWriteArraySet workaround of this package. We compared it against
the linked list implementation building upon TL2.

Figure 4 uses the throughput (amount of committing transactions per
time unit) of the bare sequential implementation (without synchroniza-
tion) as the baseline. It illustrates the throughput speedup (over se-
quential) one can achieve using either the classic transactions or the ex-
isting java.util.concurrent package. When its normalized throughput is 1,
the throughput of the corresponding concurrent implementation equals the
throughput of the sequential implementation. In particular, the graph indi-
cates that the existing collection performs 2.2x faster than classic transac-
tions on 64 threads. The poor performance of classic transactions is due to
their lack of concurrency, problem that will be addressed in the next section.

4 Democratizing Transactions: the Challenge

Traditionally, transactional systems ensure the same semantics for all its
transactions, independently of their role in the concurrent applications. As
we discussed, these semantics are, however, overly conservative and, by lim-
iting concurrency, may also limit performance (cf. Section 3). Without ad-
ditional control, skilled programmers will be frustrated by not being able to
obtain highly efficient concurrent programs. In order to adequately exploit
the concurrency allowed by the semantics of an application it is necessary
to trade simplicity off for additional control.

We argue that for the transactional abstraction to really become a widely
used programming paradigm it should be democratized. Not only should
transactions be an off-the-shelf solution for novices, but they should also
permit additional control to concurrent programming experts. Therefore,
we believe that a simple default semantics should be able to run concur-
rently with transactions of more complex semantics capturing more sub-
tle behaviors. The challenge is twofold. First, the transaction abstraction
should allow the expert programmers to easily express hints about the tar-
geted application semantics without modifying the sequential code. Second,
the semantics of each transaction must be preserved even though multiple
transactions of different semantics can access common data concurrently.

This second property is crucial and makes the development of a trans-
actional system even more complex.

4.1 Relaxation and sequentiality

Several transaction models have been proposed as a relaxed alternative to
the classic one. Two examples are open nesting [24] and transactional boost-
ing [16]. They both exploit commutativity by considering transactional
operations at a high level of abstraction. They acquire abstract locks to
apply nested operations and require the programmer to specify compen-
sating actions or inverse operations to roll-back these high-level changes.
To avoid deadlocks due to the acquisition of new locks at abort time, the
programmer may follow lock-order rules or exploit timeouts. Alternatively,
other approaches consists in extending the interface of the transactional
memory system with explicit mechanisms like various functions, light reads,
unit-loads, SNAP and early release. For example, early release can be
used explicitly by the programmer to indicate from which point of the trans-
action all conflicts involving its read of a given location can be ignored [17].
The challenge is thus to achieve the same concurrency achievable with these

10

models while preserving sequential code and composition of transactions.

The elastic transaction model [8] aims precisely at preserving sequential
code and guaranteeing composition. This model provides, together with the
classic form, a semantics of transactions that enables to efficiently implement
search structures. Just like for a classic transaction, the programmer must
simply delimit the blocks of code that represent elastic transactions, thus
preserving sequential code as depicted in Algorithm 4. Elastic transactions
bypass deadlocks by updating memory only at commit time, avoiding the
need to acquire additional locks upon abort.

Algorithm 4 Java pseudocode of the add() operation with elastic transac-

tions
1: public boolean add(E e):
2: transaction(elastic) {

3 Node(E) prev = null
4 Node(E) nexzt = head
5: Ev
6:
7 if next == null then // empty
8 head = newNode(E) (e, next)
9: return false
10: while (v = next.getValue()).compareTo(e) < 0 do // non-empty
11: prev = next
12: next = next.getNext()
13: if next == null then break
14: if v.compareTo(e) == 0 then
15: return false
16: if prev == null then
17: Node(E) n = new Node(E) (e, next)
18: head =n
19: else prev.setNext(new Node(E) (e, next))
20: return true
21: }

In contrast to classic transactions, during its execution, an elastic trans-
action can be cut (by the elastic transactional system) into multiple classic
transactions, depending on the conflicts it detects. Consider the following
history of shared accesses in which transaction j adds 1 while transaction ¢
is parsing the data structure to add 3 at its end.

H = r(h)i, r(n)i, T‘(h)j, T(n)j, w(h)j, r(t)i, w(n)’

This history is neither serializable [25] nor opaque [13] since there is no
history in which transactions i and j execute sequentially and where 7(h)’

11

occurs before w(h)’ and r(n)? occurs before w(n)® (yet the high level insert
operations of this history are atomic). A traditional transactional scheme
would detect two conflicts between transactions ¢ and j, and would not
allow them both to commit. Nonetheless, history H does not violate the
correctness of the integer set: 1 appears to be added before 3 in the linked
list and both are present at the end of the execution.

The programmer has simply to label transaction ¢ as being elastic to
solve this issue. Then, history H can be viewed as the combination of
several pieces:

S1 S2

FH) =|r(0)'r(@)'| (b)Y () w(h), [r(t), w(n)'

In f(H), elastic transaction ¢ has been cut into two transactions s; and ss.
Crucial to the correctness of this cut, no two modifications on n and t have
occurred between r(n)®' and r(t)%2. Otherwise the transaction would have
to abort.

These cuts enable more concurrency than what the expert programmer
could do with classic transactions. First, the cuts are dynamically tried
at runtime depending on the interleaving of accesses. As this interleaving
is generally non-deterministic, a programmer cannot just split transactions
prior to execution and ensure correct executions. Second, as elastic transac-
tions rely on dynamic information they exploit more information than static
commutativity of operations. For example, elastic transactions enable ad-
ditional concurrency between two linked list adds by allowing the history
involving transactions ¢; and to: r(h), r(n)2,w(h)?,w(n)" in which nei-
ther r(n)® and w(n)" nor r(h)"* and w(h)®? commute.

4.2 Composition and mixture of semantics

The more semantics the transactional system provides, the more control it
gives to experts, allowing them to boost performance. The opacity semantics
of classic transactions benefit the novice programmer as they are always safe
to use. The elastic transactions can also bring added performance in search
structures. Interestingly, one could also consider the mix of the opaque
classic and the relaxed elastic models with a new semantics, the snapshot
semantics. This is particularly appealing for obtaining efficiently a result
that depends on numerous elements of a data type, like a Java Iterator. As
an example, a snapshot transaction implementing a size method is depicted
in Algorithm 5.

At first glance, providing as many forms as possible in a single toolbox
system may seem the key solution to help develop concurrent applications

12

once and for all, the challenge lies however in the mixture of these semantics.
Mixing these semantics requires letting them access the same shared data
concurrently. It is crucial that the semantics of each individual transaction
is not violated by the execution of concurrent transactions of potentially
different semantics.

Algorithm 5 Java pseudocode of the size() operation with snapshot trans-

actions
1: public int size():

2: transaction(snapshot) {
3: intn=20
4: Node(E) curr = head
5:
6: while curr # null do
T curr = curr.getNext()
8: n++
9: return n
10: }

For example, the key idea for highly concurrent snapshot semantics is
to exploit multi-version concurrency control to let snapshots commit while
concurrent (elastic or classic) updates commit. A typical implementation of
a snapshot is to exploit a global counter and a version number per written
value, so that the transaction can fetch the counter at start time and decide
while reading new locations to return a value that has an appropriate (not
too recent) version consistent with this start time. The mixture of the
snapshot with classic and elastic transactions requires, however, to make sure
all updates (elastic and classic) must record the old value before overriding
it.

The mixture problem might even be subtler if a relaxed transaction
ignores a conflict that involves a concurrent strong transaction that cannot
ignore it. Typically, elastic and opaque transactions handle this issue for
read-write conflicts by requiring that only the reading transaction decides
upon the conflict resolution. Unlike writes, reads are idempotent so that
the semantics of the writing transaction are never altered by the outcome of
the conflict resolution. Our solution relies on (1) having invisible reads so
that the writing transaction does not observe the conflict and (2) enforcing
commit-time validation so that the reading transaction always detect the
conflict.

A consequent challenge relates to the composition of the semantics. Bob
can directly nest Alice’s elastic transactions, into another transaction, choos-
ing between labelling it as elastic, snapshot, or classic, thus guaranteeing

13

===Collection ***=Classic transactions *#*Snapshot+Elastic+Classic

10
9
5 38
Qo
® 7
=]
2 6
s
'c 5
[J]
S 2
©
£ 3
o
2 2
1
0
1 2 4 8 16 32 64
Number of threads

Figure 5: Throughput (normalized over the sequential one) of mixed trans-
actions, classic transactions and the collection package.

atomicity and deadlock-freedom of its own operation. Typically, Bob may
use various semantic transactions while encapsulating because Alice. For ex-
ample, one can imagine that Alice provides an elastic contains(z) that Bob
composes into a snapshot containsAll(C') method that returns successfully
only if all elements of a collection C' are present. For the sake of safety, the
strongest semantics of the involved transactions, in this case the snapshot
one, applies to all. Hence, a novice, unaware of the various semantics, will
always obtain a safe composite transactional method whose opacity would
be conveyed to inner transactions. Deciding upon which semantics to apply,
when the semantics are incomparable, is an open question.

4.3 Impact on performance

To illustrate the benefit of mixing transactions of different semantics we
run the mixed transactions on the collection benchmarks in the exact same
settings as before and reported both the new and the previously obtained
results in Figure 5. Each of the three parse operations contains, add, and
remove is implemented with an elastic transaction, and the size operation,
which returns an atomic snapshot of the number of elements, is implemented
with a snapshot transaction. The mixed transaction model performs 4.3x

14

faster than the classic transaction model, TL2, and improves on the con-
current collection package by 1.9x on 64 threads. Thanks to the snapshot
semantics, the size operation commits more frequently than with classic
transactions. The reason is that a snapshot size returns potentially values
that have been concurrently overridden, where classic size would simply be
aborted. Even though the overhead of polymorphic transactions makes them
slower than the concurrent collection package at low levels of parallelism,
the performance scales well, which compensates for the overhead effect at
high levels of parallelism.

Since then, the mixture of elastic and classic transactions has also been
shown effective in a non-managed language, C/C++, as well. First, it im-
proved the performance of the tree library implemented in the transactional
vacation reservation benchmark by 15% [3]. Second, it improved the perfor-
mance of a list-based set running on a many-core architecture by about 40
times [9].

5 Concluding Remarks

The transaction is an old appealing abstraction that has been the main topic
of many practical and theoretical achievements in research. It has however
never been widely adopted in practice.

We argue that the reason why the transaction abstraction is appealing
as a programming construct is also the reason why it might not be used
in practice. In short, the appeal comes from the simplicity and the very
fact that transactions will enable bringing multicore programming to the
masses. Average programmers can write concurrent code and, with little
effort, use transactions to protect shared data against incorrectness. Yet,
the simplicity of the concept is also its main source of rigidity. It prevents
expert programmers from exploiting their skills and from enabling as much
concurrency as they could, thereby limiting performance scalability. We
showed that this limitation is inherent to the concept and is not simply a
matter of usage.

We suggest a way out by truly democratizing the transaction concept
and promoting the co-existence of different transactional semantics in the
same application. Although a novice programmer will still be able to exploit
the simplicity of the transaction abstraction in its original, strong and hence
simple, form, expert programmers would exploit, whenever possible, more
expressive semantics of relaxed transaction models to gain in concurrency.
As this polymorphism helps experts take full advantage of transactions, we

15

expect to see new efficient libraries that will motivate other programmers
to adopt this abstraction. This polymorphism also raises new challenges to
guarantee that the various semantics can be used effectively in the same
system.

References

1]

G.T. Almes, A.P. Black, E.D. Lazowska, and J.D. Noe. The eden sys-
tem: A technical review. IEFEE Trans. on Software Engineering, SE-
11(1):43-59, 1985.

Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng
Wu, Stefanie Chiras, and Siddhartha Chatterjee. Software transactional
memory: Why is it only a research toy? Queue, 6:46-58, 2008.

Tyler Crain, Vincent Gramoli, and Michel Raynal. A speculation-
friendly binary search tree. In PPoPP, pages 161-170, 2012.

Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early expe-
rience with a commercial hardware transactional memory implementa-
tion. In ASPLOS, pages 157-168, 2009.

Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In
DISC, volume 4167 of LNCS, 2006.

Aleksandar Dragojevic, Pascal Felber, Vincent Gramoli, and Rachid
Guerraoui. Why STM can be more than a research toy. Commun.
ACM, 54(4):70-77, 2011.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of
consistency and predicate locks in a database system. Commun. ACM,
19:624-633, 1976.

Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. Elastic trans-
actions. In DISC, volume 5805 of LNCS, pages 93—-107, 2009.

Vincent Gramoli, Rachid Guerraoui, and Vasileios Trigonakis. TM2C,
a software transactional memory for many-cores. In FuroSys, pages
351-364, 2012.

Vincent Gramoli, Derin Harmanci, and Pascal Felber. On the in-
put acceptance of transactional memory. Parallel Processing Letters,
20(1):31-50, 2010.

16

[11]

[12]

[13]

[14]

[15]

[18]

[19]

[20]

21]

[22]

[23]

Michael Greenwald. Two-handed emulation: how to build non-blocking
implementations of complex data-structures using DCAS. In PODC,
pages 260-269, 2002.

Rachid Guerraoui, Riccardo Capobianchi, Agnes Lanusse, and Pierre
Roux. Nesting actions through asynchronous message passing: the ACS
protocol. In ECOOP, volume 615 of LNCS, pages 170-184, 1992.

Rachid Guerraoui and Michal Kapalka. Principles of Transactional
Memory. Morgan&Claypool, 2010.

Tim Harris. A pragmatic implementation of non-blocking linked-lists.
In DISC, volume 2180 of LNCS, pages 300-314, 2001.

Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy.
Composable memory transactions. In PPoPP, pages 48-60, 2005.

Maurice Herlihy and Eric Koskinen. Transactional boosting: A method-
ology for highly-concurrent transactional objects. In PPoPP, 2008.

Maurice Herlihy, Victor Luchangco, Mark Moir, and William N.
Scherer III. Software transactional memory for dynamic-sized data
structures. In PODC, pages 92-101, 2003.

Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architec-
tural support for lock-free data structures. SIGARCH Comput. Archit.
News, 21:289-300, 1993.

Tom Knight. An architecture for mostly functional languages. In LFP,
pages 105-112; 1986.

Guy Korland, Nir Shavit, and Pascal Felber. Deuce: Noninvasive soft-
ware transactional memory. Transactions on HiPEAC, 5(2), 2010.

Barbara Liskov. The argus language and system. In Distributed Sys-
tems: Methods and Tools for Specification, An Advanced Course, vol-
ume 190 of LNCS, pages 343-430, 1985.

Barbara Liskov and Robert Scheifler. Guardians and actions: linguistic
support for robust, distributed programs. In POPL, pages 7-19, 1982.

Nancy A. Lynch. Multilevel atomicity a new correctness criterion for
database concurrency control. ACM Trans. Database Syst., 8, 1983.

17

[24]

[25]

[26]

J. Eliot B. Moss. Open nested transactions: Semantics and support. In
WMPI, 2006.

Christos H. Papadimitriou. The serializability of concurrent database
updates. J. ACM, 26:631-653, 1979.

Hany E. Ramadan, Indrajit Roy, Maurice Herlihy, and Emmett
Witchel. Committing conflicting transactions in an STM. In PPoPP,
20009.

Andreas Reuter. Concurrency on high-traffic data elements. In PODS,
pages 83-92, 1982.

William N. Scherer, IIT and Michael L. Scott. Advanced contention
management for dynamic software transactional memory. In PODC,
pages 240-248, 2005.

Nir Shavit and Dan Touitou. Software transactional memory. In PODC;
pages 204-213, 1995.

Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven
Balensiefer, Dan Grossman, Richard L. Hudson, Katherine F. Moore,
and Bratin Saha. Enforcing isolation and ordering in STM. In PLDI,
pages 78-88, 2007.

18

