The Limitations of Registers

R. Guerraoui
Distributed Programming Laboratory
Registers

• **Question 1:** what objects can we implement with registers? *Counters* and *snapshots* (previous lecture)

• **Question 2:** what objects we cannot implement? (this lecture)
Shared memory model

Registers

P1
P2
P3
Shared memory model

- Registers
- Counters
- Snapshots
Shared memory model

P1

Counters

Snapshots

P2

Registers

Fetch&Inc?

P3

Queue?
Fetch&Inc

- A counter that contains an integer

- Operation fetch&inc() increments the counter and returns the new value
The consensus object

- One operation `propose()` which returns a value. When a propose operation returns, we say that the process decides.

- No two processes decide differently.

- Every decided value is a proposed value.
The consensus object

- **Proposition:**
 - Consensus can be implemented among two processes with *Fetch&Inc* and *registers*.

- Proof (algorithm): consider two processes p₀ and p₁ and two *registers* R₀ and R₁ and a *Fetch&Inc* C.
2-Consensus with Fetch&Inc

- Uses two registers R0 and R1, and a Fetch&Inc object C (with one fetch&inc() operation that returns its value)
- (NB. The value in C is initialized to 0)

Process pI:

- propose(vI)
- R1.write(vI)
- val := C.fetch&inc()
- if(val = 1) then
 return(vI)
- else return(R{1-I}.read())
Impossibility [FLP85, LA87]

- **Proposition:** there is no *asynchronous deterministic* algorithm that implements *consensus* among two processes using only registers

- **Corollary:** there is no algorithm that implements *Fetch&Inc* among two processes using only registers
Queue

- The queue is an object container with two operations: `enq()` and `deq()`

- Can we implement a (atomic wait-free) queue?
2-Consensus with queues

Uses two registers R0 and R1, and a queue Q
Q is initialized to \{winner, loser\}

Process pl:

\begin{verbatim}
propose(vl)
 R{l}.write(vl)
 item := Q.dequeue()
 if item = winner return(vl)
 return(R{1-l}.read())
\end{verbatim}
\[P_0 \quad W(0) \quad \text{Deq()} -> \text{winner} \quad \text{Return}(0) \]

\[P_1 \quad W(1) \quad \text{Deq()} -> \text{loser} \quad \text{Return}(0) \]
Correctness

Proof (algorithm):

- (wait-freedom) by the assumption of a wait-free register and a wait-free queue plus the fact that the algorithm does not contain any wait statement

- (validity) If \(p_I \) dequeues winner, it decides on its own proposed value. If \(p_I \) dequeues loser, then the other process \(p_J \) dequeued winner before. By the algorithm, \(p_J \) has previously written its input value in \(R_J \). Thus, \(p_I \) decides on \(p_J \)'s proposed value;

- (agreement) if the two processes decide, they decide on the value written in the same register.
More consensus implementations

- A *Test&Set* object maintains binary values x, init to 0, and y; it provides one operation: **test&set()**
 - Sequential spec:
 - **test&set()** \{ $y := x; \ x: = 1; \ return(y);$ \}

- A *Compare&Swap* object maintains a value x, init to \bot, and provides one operation: **compare&swap(v,w)**;
 - Sequential spec:
 - c&s(old,new) \{ if $x = \text{old}$ then $x := \text{new}$; return(x) \}
2-Consensus with Test&Set

- Uses two registers R0 and R1, and a Test&Set object T

- Process pl:
 - propose(vl)
 - RL.write(vl)
 - val := T.test&set()
 - if(val = 0) then
 - return(vl)
 - else return(R{1-I}.read())
N-Consensus with C&S

- Uses a C&S object C

- Process pI:
 - propose(vI)
 - \[\text{val} := C.\text{c&s}(\bot, vI) \]
 - \[\text{if (val = } \bot \text{) then} \]
 - \[\text{return(vI)} \]
 - \[\text{else return(val)} \]
Proposition: there is no asynchronous deterministic algorithm that implements consensus among two processes using only registers

Corollary: there is no algorithm that implements a queue (Fetch&Inc, Test&Set or C&S) among two processes using only registers
Registers

• **Question 1:** what objects can we implement with registers? *Counters* and *snapshots* (previous lecture)

• **Question 2:** what objects we cannot implement? All objects that (together with *registers*) can implement *consensus* (this lecture)
Impossibility (Proof)

- **Proposition:** there is no algorithm that implements *consensus* among two processes using only *registers*

- Proof (by contradiction): consider two processes p0 and p1 and any number of *registers*, R1..Rk..
 Assume that a consensus algorithm A for p0 and p1 exists.
Elements of the model

- A configuration is a global state of the distributed system

- A new configuration is obtained by executing a step on a previous configuration: the step is the unit of execution
Elements of the model

- The adversary decides which process executes the next step and the algorithm deterministically decides the next configuration based on the current one
What is distributed computing?
A game
A game between an adversary and a set of processes
The adversary decides which process goes next

The processes take steps
Elements of the model

- The adversary decides which process executes the next step and the algorithm deterministically decides the next configuration based on the current one.
Elements of the model

- **Schedule**: a sequence of steps represented by process ids
- The schedule is chosen by the system
- An asynchronous system is one with no constraint on the schedules: any sequence of process ids is a schedule
Consensus

- The algorithm must ensure that \textit{agreement} and \textit{validity} are satisfied in every schedule.
- Every process that executes an infinite number of steps eventually decides.
Impossibility (elements)

- (1) a (initial) **configuration** C is a set of (initial) values of p_0 and p_1 together with the values of the registers: R_1..R_k,..;

- (2) a **step** is an elementary action executed by some process p_I: it consists in reading or writing a value in a register and changing p_I’s state according to the algorithm A;

- (3) a **schedule** S is a sequence of steps; $S(C)$ denotes the configuration that results from applying S to C.
Impossibility (elements)

- Consider u to be 0 or 1; a configuration C is u-valent if, starting from C, no matter how the processes behave, no decision other than u is possible.

- We say that the configuration is univalent. Otherwise, the configuration is called bivalent.
P0(0) \[\overrightarrow{W(X)}\overrightarrow{R_I}\overrightarrow{R_J}\overrightarrow{Y}\overrightarrow{\text{Return}(0)}\]

P1(0) \[\overrightarrow{W(Z)}\overrightarrow{R_K}\overrightarrow{R_L}\overrightarrow{W(V)}\overrightarrow{\text{Return}(0)}\]
P0(1) \[\begin{array}{c} W(X) \\ RI \end{array} \] \quad \text{R()} \rightarrow Y \quad \text{Return(1)}

P1(1) \[\begin{array}{c} W(Z) \\ RK \end{array} \] \quad \begin{array}{c} W(V) \\ RL \end{array} \] \quad \text{Return(1)}
Impossibility (structure)

- **Lemma 1:** there is at least one initial *bivalent* configuration

- **Lemma 2:** given any bivalent configuration C, there is an *arbitrarily long schedule* $S(C)$ that leads to another bivalent configuration
The conclusion

- Lemmas 1 and 2 imply that there is a configuration C and an infinite schedule S such that, for any prefix S' of S, $S'(C)$ is bivalent.

- In infinite schedule S, at least one process executes an infinite number of steps and does not decide

- A contradiction with the assumption that A implements consensus.
Lemma 1

The initial configuration $C(0,1)$ is bivalent

Proof: consider $C(0,0)$ and p_1 not taking any step: p_0 decides 0; p_0 cannot distinguish $C(0,0)$ from $C(0,1)$ and can hence decides 0 starting from $C(0,1)$; similarly, if we consider $C(1,1)$ and p_0 not taking any step, p_1 eventually decides 1; p_1 cannot distinguish $C(1,1)$ from $C(0,1)$ and can hence decides 1 starting from $C(0,1)$. Hence the bivalency.
Lemma 2

Given any bivalent configuration C, there is an arbitrarily long schedule S such that S(C) is bivalent.

Proof (by contradiction): let S be the schedule with the maximal length such as D = S(C) is bivalent; p0(D) and p1(D) are both univalent: one of them is 0-valent (say p0(D)) and the other is 1-valent (say p1(D))
Lemma 2

Proof (cont’d): To go from D to $p_0(D)$ (vs $p_1(D)$) p_0 (vs p_1) accesses a register; the register must be the same in both cases; otherwise $p_1(p_0(D))$ is the same as $p_0(p_1(D))$: in contradiction with the very fact that $p_0(D)$ is 0-valent whereas $p_1(D)$ is 1-valent
Lemma 2

Proof (cont’d): To go from D to \(p_0(D) \), \(p_0 \) cannot read \(R \); otherwise \(R \) has the same state in \(D \) and in \(p_0(D) \); in this case, the registers and \(p_1 \) have the same state in \(p_1(p_0(D)) \) and \(p_1(D) \); if \(p_1 \) is the only one executing steps, then \(p_1 \) eventually decides 1 in both cases: a contradiction with the fact that \(p_0(D) \) is 0-valent; the same argument applies to show that \(p_1 \) cannot read \(R \) to go from \(D \) to \(p_1(D) \).

Thus both \(p_0 \) and \(p_1 \) write in \(R \) to go from \(D \) to \(p_0(D) \) (resp., \(p_1(D) \)). But then \(p_0(p_1(D)) = p_0(D) \) (resp. \(p_1(p_0(D)) = p_1(D) \)) --- a contradiction.
The conclusion (bis)

Lemmas 1 and 2 imply that there is a configuration C and an *infinite* schedule S such that, for any prefix S’ of S, S’(C) is bivalent.

In infinite schedule S, at least one process executes an infinite number of steps and does not decide.

A contradiction with the assumption that A implements consensus.