Register implementations out of faulty base registers

Prof R. Guerraoui
Distributed Programming Laboratory
Failure modes

- Responsive: once \perp, forever \perp
- Non-responsive: no reply

t denotes the number of base objects that can fail

NB. In the asynchronous model, it is impossible to distinguish a non-responsive from a slow object
Algorithms

(1) Implements a SWMR \textit{register} out of $t+1$ SWMR base responsive failure-prone \textit{registers}

(2) Implements a SWSR \textit{register} out of $2t+1$ SWSR base non-responsive failure-prone \textit{registers}
Responsive model

Write(v)
 For j = 1 to (t+1) do
 Reg[j].write(v);
 return(ok)

Read()
 For j = t+1 to 1 do
 v := Reg[j].read();
 if v ≠ ⊥ then return(v)
Non-responsive model

Init: seq := 1

Write(v)

w_seq := w_seq + 1;
For j = 1 to (2t+1) do
 Reg[j].write(w_seq, v);
« wait until a majority of oks are returned »
return(ok)
Non-responsive model

Init: \((\text{sn}, \text{val}) := (-1, \bot)\);

Read()

For \(j = 1\) to \((2t+1)\) do

\((s, v) := \text{Reg}[j].\text{read}()\);

\((\text{sn}, \text{val}) := (s, v)\) with the highest \(s\) from majority, including \((\text{sn}, \text{val})\)

return \((\text{val})\)