Concurrent programming: From theory to practice

Concurrent Algorithms 2017
Georgios Chatzopoulos
From theory to practice

Theoretical (design)

Practical (design)

Practical (implementation)
From theory to practice

- Impossibilities
- Upper/Lower bounds
- Techniques
- System models
- Correctness proofs
- Correctness

Design (pseudo-code)
From theory to practice

Theoretical (design)
- Impossibilities
- Upper/Lower bounds
- Techniques
- System models
- Correctness proofs
- Correctness

Practical (design)
- System models
 - shared memory
 - message passing
- Finite memory
- Practicality issues
 - re-usable objects
- Performance

Design (pseudo-code)

Practical (implementation)

Design (pseudo-code, prototype)
From theory to practice

Theoretical (design)
- Impossibilities
- Upper/Lower bounds
- Techniques
- System models
- Correctness proofs
- **Correctness**

Practical (design)
- System models
 - shared memory
 - message passing
- Finite memory
- Practicality issues
 - re-usable objects
- **Performance**

Practical (implementation)
- **Hardware**
 - Which atomic ops
 - Memory consistency
 - Cache coherence
 - Locality
 - **Performance**
 - **Scalability**

Design (pseudo-code)

Design (pseudo-code, prototype)

Implementation (code)
Example: linked list implementations

Throughput (Mop/s)

Cores

"bad" linked list
"good" linked list

optimistic
pessimistic
Outline

- CPU caches
- Cache coherence
- Placement of data
- Hardware synchronization instructions
- Correctness: Memory model & compiler
- Performance: Programming techniques
Outline

- CPU caches
- Cache coherence
- Placement of data
- Hardware synchronization instructions
- Correctness: Memory model & compiler
- Performance: Programming techniques
Why do we use caching?

- Core freq: 2GHz = 0.5 ns / instr
- Core \rightarrow Disk = \simms
Why do we use caching?

- Core freq: 2GHz = 0.5 ns / instr
- Core \rightarrow Disk = \simms
- Core \rightarrow Memory = \sim100ns
Why do we use caching?

- Core freq: 2GHz = 0.5 ns / instr
- Core → Disk = ~ms
- Core → Memory = ~100ns
- Cache
 - Large = slow
 - Medium = medium
 - Small = fast
Why do we use caching?

- Core freq: 2GHz = 0.5 ns / instr
- Core → Disk = ~ms
- Core → Memory = ~100ns
- Cache
 - Core → L3 = ~20ns
 - Core → L2 = ~7ns
 - Core → L1 = ~1ns
Typical server configurations

- **Intel Xeon**
 - 12 cores @ 2.4GHz
 - L1: 32KB
 - L2: 256KB
 - L3: 24MB
 - Memory: 256GB

- **AMD Opteron**
 - 8 cores @ 2.4GHz
 - L1: 64KB
 - L2: 512KB
 - L3: 12MB
 - Memory: 256GB
Experiment
Throughput of accessing some memory, depending on the memory size
Outline

- CPU caches
- Cache coherence
- Placement of data
- Hardware synchronization instructions
- Correctness: Memory model & compiler
- Performance: Programming techniques
Until ~2004: Single-cores

- Core freq: 3+GHz
- Core → Disk
- Core → Memory
- Cache
 - Core → L3
 - Core → L2
 - Core → L1
After ~2004: Multi-cores

- Core freq: ~2GHz
- Core → Disk
- Core → Memory
- Cache
 - Core → shared L3
 - Core → L2
 - Core → L1
Multi-cores with private caches

Private

Core 0

L1

L2

L3

Memory

Disk

Core 1

L1

L2

= multiple copies
Core 0 has X and Core 1
- wants to write on X
- wants to read X
- did Core 0 write or read X?
Cache-coherence principles

- To perform a **write**
 - invalidate all readers, or
 - previous writer
- To perform a **read**
 - find the latest copy
Cache coherence with MESI

- A state diagram
- State (per cache line)
 - **Modified**: the only dirty copy
 - **Exclusive**: the only clean copy
 - **Shared**: a clean copy
 - **Invalid**: useless data
The ultimate goal for scalability

- Possible states
 - **Modified**: the only dirty copy
 - **Exclusive**: the only clean copy
 - **Shared**: a clean copy
 - **Invalid**: useless data

- Which state is our “favorite”?
The ultimate goal for scalability

- Possible states
 - **Modified**: the only dirty copy
 - **Exclusive**: the only clean copy
 - **Shared**: a clean copy
 - **Invalid**: useless data

= threads can keep the data close (L1 cache)
= faster
Experiment
The effects of false sharing
Outline

- CPU caches
- Cache coherence
- Placement of data
- Hardware synchronization instructions
- Correctness: Memory model & compiler
- Performance: Programming techniques
Uniformity vs. non-uniformity

- **Typical desktop machine**
 - Uniform

- **Typical server machine**
 - non-Uniform (NUMA)
Latency (ns) to access data
Latency (ns) to access data

Memory

L1

L2

L3

C

L1

L2

L3

C

L1

L2

L3

C
Latency (ns) to access data

Conclusion: we need to take care of locality
Experiment
The effects of locality
Outline

- CPU caches
- Cache coherence
- Placement of data
- Hardware synchronization instructions
- Correctness: Memory model & compiler
- Performance: Programming techniques
The Programmer’s Toolbox: Hardware synchronization instructions

- Depends on the processor
- **CAS generally provided 😊**
- TAS and atomic increment not always provided
- x86 processors (Intel, AMD):
 - Atomic exchange, increment, decrement provided
 - Memory barrier also available
- Intel as of 2014 provides transactional memory
Example: Atomic ops in GCC

```c
typedef __sync_fetch_and_OP(type *ptr, type value);
type__sync_OP_and_fetch(type *ptr, type value);
// OP in {add, sub, or, and, xor, nand}

typedef __sync_val_compare_and_swap(type *ptr, type oldval, type newval);
bool __sync_bool_compare_and_swap(type *ptr, type oldval, type newval);

__sync_synchronize(); // memory barrier
```
1. **Hardware lock elision (HLE)**

 - **Instruction prefixes:**

 XACQUIRE
 XRELEASE

 Example (GCC):

 __hle_{acquire,release}_compare_exchange_n{1,2,4,8}

 - Try to execute critical sections without acquiring/releasing the lock
 - If conflict detected, abort and acquire the lock before re-doing the work
2. **Restricted Transactional Memory (RTM)**

```c
_xbegin();
_xabort();
_xtest();
_xend();
```

Limitations:
- Not starvation free
- Transactions can be aborted for various reasons
- Should have a non-transactional back-up
- Limited transaction size
2. **Restricted Transactional Memory (RTM)**

Example:

```c
if (xbegin() == XBEGIN_STARTED){
    counter = counter + 1;
    xend();
} else {
    __sync_fetch_and_add(&counter,1);
}
```
Outline

- CPU caches
- Cache coherence
- Placement of data
- Hardware synchronization instructions
- Correctness: Memory model & compiler
- Performance: Programming techniques
Concurrent algorithm correctness

• Designing **correct** concurrent algorithms:
 1. Theoretical part
 2. **Practical part** → involves implementation

The processor and the compiler optimize assuming no concurrency!

😢
The memory consistency model

//A, B shared variables, initially 0;
//r1, r2 — local variables;

P1
A = 1;
r1 = B;

P2
B = 1;
r2 = A;

What values can r1 and r2 take?
(assume x86 processor)

Answer:
(0,1), (1,0), (1,1) and (0,0)
The memory consistency model

→ The order in which memory instructions appear to execute

What would the programmer like to see?

Sequential consistency

All operations executed in some sequential order;
Memory operations of each thread in program order;
Intuitive, but limits performance;
The memory consistency model

How can the processor reorder instructions to different memory addresses?

x86 (Intel, AMD): TSO variant

- Reads not reordered w.r.t. reads
- Writes not reordered w.r.t. writes
- Writes not reordered w.r.t. reads
- Reads may be reordered w.r.t. writes to different memory addresses

```c
//A,B,C
//globals
...
int x, y, z;
x = A;
y = B;
B = 3;
A = 2;
y = A;
C = 4;
z = B;
...
```
The memory consistency model

• **Single thread** – reorderings transparent;

• **Avoid reorderings**: memory barriers
 • x86 – implicit in atomic ops;
 • “volatile” in Java;
 • Expensive - use only when really necessary;

• **Different processors** – different memory models
 • e.g., ARM – relaxed memory model (anything goes!);
 • VMs (e.g. JVM, CLR) have their own memory models;
Beware of the compiler

```c
void lock(int * some_lock) {
    while (CAS(some_lock, 0, 1) != 0) {}
    asm volatile("" :: "memory"); //compiler barrier
}
void unlock(int * some_lock) {
    asm volatile("" :: "memory"); //compiler barrier
    *some_lock = 0;
}

volatile int the_lock=0;
```

C "volatile" !=
Java "volatile"

- The compiler can:
 - reorder instructions
 - remove instructions
 - not write values to memory
Outline

- CPU caches
- Cache coherence
- Placement of data
- Hardware synchronization instructions
- Correctness: Memory model & compiler
- **Performance:** Programming techniques
Concurrent Programming Techniques

• What techniques can we use to speed up our concurrent application?

• **Main idea**: Minimize contention on cache lines

• **Use case**: Locks
 • `acquire() = lock()`
 • `release() = unlock()`
typedef volatile uint lock_t;

void acquire(lock_t * some_lock) {
 while (TAS(some_lock) != 0) {}
 asm volatile("" :::: "memory");
}

void release(lock_t * some_lock) {
 asm volatile("" :::: "memory");
 *some_lock = 0;
}
How good is this lock?

- A simple benchmark
- Have 48 threads continuously acquire a lock, update some shared data, and unlock
- Measure how many operations we can do in a second

Test-and-Set lock: 190K operations/second
How can we improve things?

Avoid cache-line ping-pong:
Test-and-Test-and-Set Lock

```c
void acquire(lock_t * some_lock) {
    while(1) {
        while (*some_lock != 0) {}  
        if (TAS(some_lock) == 0) {
            return;
        }
    }
    asm volatile("" ::: "memory");
}

void release(lock_t * some_lock) {
    asm volatile("" ::: "memory");
    *some_lock = 0;
}
```
Performance comparison

- Test-and-Set
- Test-and-Test-and-Set
But we can do even better

Avoid thundering herd:
Test-and-Test-and-Set with Back-off

```c
void acquire(lock_t * some_lock) {
    uint backoff = INITIAL_BACKOFF;
    while(1) {
        while (*some_lock != 0) {} 
        if (TAS(some_lock) == 0) {
            return;
        } else {
            lock_sleep(backoff);
            backoff=min(backoff*2,MAXIMUM_BACKOFF);
        }
    }
    asm volatile("" ::: "memory");
}

void release(lock_t * some_lock) {
    asm volatile("" ::: "memory");
    *some_lock = 0;
}
```
Performance comparison

Ops/second (thousands)

Test-and-Set

Test-and-Test-and-Set

Test-and-Test-and-Set w. backoff

57
Are these locks fair?

Processed requests per thread, Test-and-Set lock

Thread number

Number of processed requests
What if we want fairness?

Use a FIFO mechanism: Ticket Locks

typedef ticket_lock_t {
 volatile uint head;
 volatile uint tail;
} ticket_lock_t;

void acquire(ticket_lock_t * a_lock) {
 uint my_ticket = fetch_and_inc(&(a_lock->tail));
 while (a_lock->head != my_ticket) {}
 asm volatile("":"volatile :memory");
}

void release(ticket_lock_t * a_lock) {
 asm volatile("":"volatile :memory");
 a_lock->head++;
}
What if we want fairness?

Processed requests per thread, Ticket Locks
Performance comparison

- Test-and-Set
- Test-and-Test-and-Set
- Test-and-Test-and-Set w. backoff
- Ticket

Ops/second (thousands)
Can we back-off here as well?

Yes, we can:
Proportional back-off

```c
void acquire(ticket_lock_t * a_lock) {
    uint my_ticket = fetch_and_inc(&a_lock->tail);
    uint distance, current_ticket;
    while (1) {
        current_ticket = a_lock->head;
        if (current_ticket == my_ticket) break;
        distance = my_ticket - current_ticket;
        if (distance > 1)
            lock_sleep(distance * BASE_SLEEP);
    }
    asm volatile("" ::: "memory");
}

void release(ticket_lock_t * a_lock) {
    asm volatile("" ::: "memory");
    a_lock->head++;
}
```
Performance comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>Ops/second (thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test-and-Set</td>
<td>63</td>
</tr>
<tr>
<td>Test-and-Test-and-Set</td>
<td>200</td>
</tr>
<tr>
<td>Test-and-Test-and-Set w. backoff</td>
<td>630</td>
</tr>
<tr>
<td>Ticket</td>
<td>200</td>
</tr>
<tr>
<td>Ticket w. backoff</td>
<td>1600</td>
</tr>
</tbody>
</table>
Still, everyone is spinning on the same variable.…

Use a different address for each thread:
Queue Locks

Use with care:
1. storage overheads
2. complexity
Performance comparison

Ops/second (thousands)

- Test-and-Set
- Test-and-Test-and-Set
- Test-and-Test-and-Set w. backoff
- Ticket
- Ticket w. backoff
- Queue lock

Operations/second (thousands) range from 0 to 2000.
To summarize on locks

1. Reading before trying to write
2. Pausing when it’s not our turn
3. Ensuring fairness (does not always bring \(\text{++} \))
4. Accessing disjoint addresses (cache lines)

More than 10x performance gain!
Conclusion

• Concurrent algorithm design
 • Theoretical design
 • Practical design (may be just as important)
 • Implementation

• You need to know your hardware
 • For correctness
 • For performance