
1

© R. Guerraoui

Atomic register

algorithms

R. Guerraoui

Distributed Programming Laboratory

 lpdwww.epfl.ch

2

Overview of this lecture

(1) From regular to atomic

(2) A 1-1 atomic fail-stop algorithm

(3) A 1-N atomic fail-stop algorithm

(4) A N-N atomic fail-stop algorithm

(5) From fail-stop to fail-silent

3

Fail-stop algorithms
We first assume a fail-stop model; more
precisely:

 any number of processes can fail by
crashing (no recovery)

 channels are reliable

 failure detection is perfect

4

The simple algorithm
Consider our fail-stop regular register
algorithm

every process has a local copy of the
register value

 every process reads locally

 the writer writes globally, i.e., at all (non-
crashed) processes

5

The simple algorithm
Write(v) at pi

 send [W,v] to all

 for every pj, wait
until either:

 received [ack] or

 suspected [pj]

Return ok

At pi:

 when receive [W,v]
from pj

 vi := v

 send [ack] to pj

Read() at pi

Return vi

6

Atomicity?

P1

P2
W(5) W(6)

R1() -> 5 R2() -> 6

 v1 = 5 v1 = 6

P3

R3() -> 5

 v3 = 5

7

Linearization?

P1

P2
W(5) W(6)

R1() -> 5 R2() -> 6

P3
R3() -> 5 ??

8

Fixing the pb: read-globally

Read() at pi

send [W,vi] to all

 for every pj, wait until either:

 receive [ack] or

 suspect [pj]

Return vi

9

Still a problem

P1

P2
W(5) W(6)

R() -> 5

P3

R() -> 5

10

Linearization?

P1

P2
W(5) W(6)

R1() -> 5

P3
R3() -> 5 ??

11

Overview of this lecture

(1) From regular to atomic

(2) A 1-1 atomic fail-stop algorithm

(3) A 1-N atomic fail-stop algorithm

(4) A N-N atomic fail-stop algorithm

(5) From fail-stop to fail-silent

12

A fail-stop 1-1 atomic
algorithm

Write(v) at p1

 send [W,v] to p2

 Wait until either:

 receive [ack]
from p2 or

 suspect [p2]

Return ok

At p2:

 when receive [W,v]
from p1

 v2 := v

 send [ack] to p2

Read() at p2

Return v2

13

every process maintains a local value of
the register as well as a sequence number

 the writer, p1, maintains, in addition a
timestamp ts1

 any process can read in the register

A fail-stop 1-N algorithm

14

Write(v) at p1

 ts1++

send [W,ts1,v] to all

 for every pi, wait
until either:

 receive [ack] or

 suspect [pi]

Return ok

Read() at pi

send [W,sni,vi] to all

 for every pj, wait
until either:

 receive [ack] or

 suspect [pj]

Return vi

A fail-stop 1-N algorithm

15

A 1-N algorithm (cont’d)

At pi

 When pi receive [W,ts,v] from pj

 if ts > sni then

 vi := v

 sni := ts

 send [ack] to pj

16

Why not N-N?

P1

P2
W(X)

W(Z)

R() -> Y

P3

W(Y)

17

The Write() algorithm

 Write(v) at pi

 send [W] to all

 for every pj wait until

 receive [W,snj] or

 suspect pj

 (sn,id) := (highest snj + 1,i)

 send [W,(sn,id),v] to all

 for every pj wait until

 receive [W,(sn,id),ack] or

 suspect pj

 Return ok

 At pi

T1:

 when receive [W] from pj

 send [W,sn] to pj

T2:

 when receive [W,(snj,idj),v]

from pj

 If (snj,idj) > (sn,id) then

 vi := v

 (sn,id) := (snj,idj)

 send [W,(snj,idj),ack] to pj

18

The Read() algorithm

 Read() at pi

 send [R] to all

 for every pj wait until

 receive [R,(snj,idj),vj] or

 suspect pj

 v = vj with the highest (snj,idj)

 (sn,id) = highest (snj,idj)

 send [W,(sn,id),v] to all

 for every pj wait until

 receive [W,(sn,id),ack] or

 suspect pj

 Return v

 At pi

T1:

 when receive [R] from pj

 send [R,(sn,id),vi] to pj

T2:

 when receive [W,(snj,idj),v]

from pj

 If (snj,idj) > (sn,id) then

 vi := v

 (sn,id) := (snj,idj)

 send [W,(snj,idj),ack] to pj

19

Overview of this lecture

(1) From regular to atomic

(2) A 1-1 atomic fail-stop algorithm

(3) A 1-N atomic fail-stop algorithm

(4) A N-N atomic fail-stop algorithm

(5) From fail-stop to fail-silent

20

From fail-stop to fail-silent

 We assume a majority of correct processes

 In the 1-N algorithm, the writer writes in a majority

using a timestamp determined locally and the

reader selects a value from a majority and then

imposes this value on a majority

 In the N-N algorithm, the writers determines first

the timestamp using a majority

