
1 © R. Guerraoui

Distributed systems

Reliable Broadcast

Prof R. Guerraoui
Lpdwww.epfl.ch

2

Broadcast

B

A

C

m

m

deliver

broadcast

deliver

3

Best-effort broadcast
Reliable broadcast
Uniform broadcast

P1

P2

P3

Broadcast abstractions

4

Modules of a process

request (deliver)

indication

(deliver)

indication

request (deliver)

indication
(deliver)

request (deliver)

indication

5

Intuition
!   Broadcast is useful for instance in applications

where some processes subscribe to events
published by other processes (e.g., stocks)

!   The subscribers might require some
reliability guarantees from the broadcast
service (we say sometimes quality of service
– QoS) that the underlying network does not
provide

6

Overview
!   We shall consider three forms of reliability for

a broadcast primitive
!  (1) Best-effort broadcast
!  (2) (Regular) reliable broadcast
!  (3) Uniform (reliable) broadcast
!  We shall give first specifications and

then algorithms

7

Best-effort broadcast (beb)

!   Events

!   Request: <bebBroadcast, m>

!   Indication: <bebDeliver, src, m>

•  Properties: BEB1, BEB2, BEB3

8

Best-effort broadcast (beb)
!   Properties

!   BEB1. Validity: If pi and pj are correct,
then every message broadcast by pi is
eventually delivered by pj

!   BEB2. No duplication: No message is
delivered more than once

!   BEB3. No creation: No message is
delivered unless it was broadcast

9

Best-effort broadcast

p1

p2

p3

m

m

delivery

delivery

delivery

10

Best-effort broadcast

m1

m1

crash p1

p2

p3

m2 m2
delivery

delivery

delivery

delivery

11

Reliable broadcast (rb)

!   Events

!   Request: <rbBroadcast, m>

!   Indication: <rbDeliver, src, m>

•  Properties: RB1, RB2, RB3, RB4

12

Reliable broadcast (rb)
!   Properties

!   RB1 = BEB1.

!   RB2 = BEB2.

!   RB3 = BEB3.

!  RB4. Agreement: For any message m, if
a correct process delivers m, then every
correct process delivers m

13

Reliable broadcast

m1

m1

crash p1

p2

p3

m2

m2

delivery

delivery

delivery

delivery

14

Reliable broadcast

m1

m1

crash p1

p2

p3

m2

delivery

delivery

delivery

15

Reliable broadcast

m1

m1

crash p1

p2

p3

m2
delivery delivery

m2

crash

delivery

delivery delivery

16

Uniform broadcast (urb)

!   Events

!   Request: <urbBroadcast, m>

!   Indication: <urbDeliver, src, m>

•  Properties: URB1, URB2, URB3, URB4

17

Uniform broadcast (urb)
!   Properties

!   URB1 = BEB1.

!   URB2 = BEB2.

!   URB3 = BEB3.

!  URB4. Uniform Agreement: For any
message m, if a process delivers m, then
every correct process delivers m

18

Uniform reliable broadcast

m1

m1

crash p1

p2

p3

m2
delivery delivery

m2

crash

delivery delivery

delivery delivery

19

Uniform reliable broadcast

m1

m1

crash p1

p2

p3

m2
delivery

crash

delivery

delivery

20

Overview
!   We consider three forms of reliability for a

broadcast primitive
!  (1) Best-effort broadcast
!  (2) (Regular) reliable broadcast
!  (3) Uniform (reliable) broadcast
!  We give first specifications and then

algorithms

21

Algorithm (beb)
!   Implements: BestEffortBroadcast (beb).

!   Uses: PerfectLinks (pp2p).

!   upon event < bebBroadcast, m> do

!   forall pi ∈ S do

!   trigger < pp2pSend, pi, m>;

!   upon event < pp2pDeliver, pi, m> do

!   trigger < bebDeliver, pi, m>;

22

Algorithm (beb)

p1

p2

p3

m

m

delivery

delivery

delivery

23

Algorithm (beb)
!   Proof (sketch)

!   BEB1. Validity: By the validity property of perfect
links and the very facts that (1) the sender sends the
message to all and (2) every correct process that
pp2pDelivers a message bebDelivers it

!   BEB2. No duplication: By the no duplication
property of perfect links

!   BEB3. No creation: By the no creation property of
perfect links

24

Algorithm (beb)

m1

m1

crash p1

p2

p3

m2 m2

delivery

delivery

delivery

delivery

25

Algorithm (rb)
!   Implements: ReliableBroadcast (rb).

!   Uses:

!   BestEffortBroadcast (beb).

!   PerfectFailureDetector (P).

!   upon event < Init > do

!   delivered := ∅;

!   correct := S;

!   forall pi ∈ S do from[pi] := ∅;

26

Algorithm (rb – cont’d)

!   upon event < rbBroadcast, m> do

!  delivered := delivered U {m};

!  trigger < rbDeliver, self, m>;

!  trigger < bebBroadcast, [Data,self,m]>;

27

Algorithm (rb – cont’d)

!   upon event < crash, pi > do

!   correct := correct \ {pi};

!   forall [pj,m] ∈ from[pi] do

!   trigger < bebBroadcast,[Data,pj,m]>;

28

Algorithm (rb – cont’d)

!   upon event < bebDeliver, pi, [Data,pj,m]> do

!   if m ∉ delivered then

!   delivered := delivered U {m};

!   trigger < rbDeliver, pj, m>;

!   if pi ∉ correct then

!   trigger < bebBroadcast,[Data,pj,m]>;

!   else

!   from[pi] := from[pi] U {[pj,m]};

29

Algorithm (rb)

m

m

p1

p2

p3 delivery

delivery

delivery

30

Algorithm (rb)

m

m

p1

p2

p3

crash

m

m

delivery

delivery

31

Algorithm (rb)
!   Proof (sketch)

!   RB1. RB2. RB3: as for the 1st algorithm

!  RB4. Agreement: Assume some correct process
pi rbDelivers a message m rbBroadcast by some
process pk. If pk is correct, then by property
BEB1, all correct processes bebDeliver and then
rebDeliver m. If pk crashes, then by the
completeness property of P, pi detects the crash
and bebBroadcasts m to all. Since pi is correct,
then by property BEB1, all correct processes
bebDeliver and then rebDeliver m.

32

Algorithm (urb)
!   Implements: uniformBroadcast (urb).

!   Uses:

!   BestEffortBroadcast (beb).

!   PerfectFailureDetector (P).

!   upon event < Init > do

!   correct := S;

!   delivered := forward := ∅;

!   ack[Message] := ∅;

33

Algorithm (urb – cont’d)

!   upon event < crash, pi > do

!   correct := correct \ {pi};

!   upon event < urbBroadcast, m> do

!   forward := forward U {[self,m]};

!   trigger < bebBroadcast, [Data,self,m]>;

34

Algorithm (urb – cont’d)

!   upon event <bebDeliver, pi, [Data,pj,m]> do

!   ack[m] := ack[m] U {pi};

!   if [pj,m] ∉ forward then

!  forward := forward U {[pj,m]};

!  trigger < bebBroadcast,[Data,pj,m]>;

35

Algorithm (urb – cont’d)

!   upon event (for any [pj,m] ∈ forward)
<correct ⊆ ack[m]> and <m ∉ delivered> do

!   delivered := delivered U {m};

!   trigger < urbDeliver, pj, m>;

36

Algorithm (urb)

m

m

p1

p2

p3

m

m

m

m

delivery

delivery

delivery

37

Algorithm (urb)

m
p1

p2

p3

crash

m

m

m

delivery

delivery

suspicion

38

Algorithm (urb)
!   Proof (sketch)

!  URB2. URB3: follow from BEB2 and BEB3
!   A simple lemma: If a correct process pi

bebDelivers a message m, then pi eventually
urbDelivers m.

!   Any process that bebDelivers m bebBroadcasts m.
By the completeness property of the failure
detector and property BEB1, there is a time at
which pi bebDelivers m from every correct process
and hence urbDelivers m.

39

Algorithm (urb)
!   Proof (sketch)

!  URB1. Validity: If a correct process pi
urbBroadcasts a message m, then pi eventually
bebBroadcasts and bebDelivers m: by our lemma,
pi urbDelivers m.

!  URB4. Agreement: Assume some process pi
urbDelivers a message m. By the algorithm and
the completeness and accuracy properties of the
failure detector, every correct process bebDelivers
m. By our lemma, every correct process will
urbDeliver m.

