Exercise Session 3
Causal and Total Order Broadcast

Exercise 1
Can we devise a broadcast algorithm that does not ensure the causal delivery property but only its nonuniform variant: no correct process p_i delivers a message m_2 unless p_i has already delivered every message m_1 such that $m_1 \rightarrow m_2$?

Exercise 2
Suggest an optimization of the garbage collection scheme of Algorithm 1’ (slide 24).

Exercise 3
Why is the condition on slide 30 $VC[pk] \geq VC_x[pk]$ and not just $VC[pk] = VC_x[pk]$? Can you construct an execution where the local vector clock is greater than the received local clock for one place?

Exercise 4
Can we devise a best-effort broadcast algorithm that satisfies the causal delivery property without being a causal broadcast algorithm, i.e., without satisfying the agreement property of a reliable broadcast?

Exercise 5
The Uniform Reliable Broadcast Algorithm requires a process to receive an acknowledgment from all nonfaulty processes before it can deliver a message. The acknowledgment is needed because when a process invokes the underlying best-effort broadcast and then crashes, all components of the process are affected and stop (including the best-effort broadcast module and any further underlying modules, such as the modules that may implement perfect links). The unit of failure is a process, not a module.

For this exercise only, consider an idealized and unrealistic system model, where some component may invoke infallible lower-level components. In this model, the unit of failure is not a process but a module. Describe an implementation of uniform reliable broadcast that uses an infallible perfect point-to-point links abstraction in this idealized model. Do not use failure detectors of any kind.

Hint: You may get some inspiration from the solution to last week’s exercise 2.

Exercise 6
Would it make sense to add the total-order property to the best-effort broadcast?

Exercise 7
What happens in our consensus-based total order broadcast algorithm if the set of messages decided on is not sorted deterministically

a) after the decision but is sorted prior to the proposal,

b) neither a priori nor a posteriori?