Distributed Systems

Terminating Reliable
Broadcast

Prof R. Guerraoui
Distributed Programming Laboratory



Terminating Reliable Broadcast




Terminating Reliable Broadcast

e Like reliable broadcast, terminating reliable
broadcast (TRB) is a communication primitive used
to disseminate a message among a set of
processes in a reliable way

e TRB is however strictly stronger than (uniform)
reliable broadcast




\ =

(Uniform) Reliable Broadcast

deliver(m)

p1—|—>
o

broadcast(m)

\ deliver(m)




(Uniform) Reliable Broadcast

?
pl —/ /¢ ¢ hHn -

broadcast(m)




\ =

Terminating Reliable Broadcast

deliver(m)

p1—|—>
o

broadcast(m)

\ deliver(m)




Terminating Reliable Broadcast
deliver(o)

—_

broadcast(m)

deliver(o)

p3 ‘




« . ‘
«

Terminating Reliable Broadcast

Like with reliable broadcast, correct processes in
TRB agree on the set of messages they deliver

Like with (uniform) reliable broadcast, every correct
process in TRB delivers every message delivered by
any process

Unlike with reliable broadcast, every correct process
delivers a message, even if the broadcaster crashes




Terminating Reliable Broadcast

The problem is defined for a specific broadcaster
process pi = src (known by all processes)

Process src is supposed to broadcast a message
m (distinct from o)

The other processes need to deliver mif src is
correct but may deliver ¢ if src crashes




Terminating Reliable Broadcast (pi)

TRB1. Integrity: If a process delivers a message m, then
either m is @ or m was broadcast by src

TRBZ2. Validity: If the sender srcis correct and broadcasts a
message m, then src eventually delivers m

TRB3. (Uniform) Agreement: For any message m, if a
correct (any) process delivers m, then every correct process
delivers m

TRB4. Termination: Every correct process eventually delivers
exactly one message

10



Terminating Reliable Broadcast

Events
Request: <trbBroadcast, m>

Indication: <trbDeliver, p, m>

o Properties:
e TRB1, TRB2, TRB3, TRB4

11



» N ’ B

Algorithm (trb)

- Implements: trbBroadcast (trb).
Uses:
» BestEffortBroadcast (beb).
» PerfectFailureDetector (P).
» Consensus(cons).
~upon event < Init > do
prop := 1;
correct :=S;

12



. Ps

) N

Algorithm (trb - cont'd)

upon event < trbBroadcast, m> do
trigger < bebBroadcast, m>;

e upon event < crash, src > and (prop=_1)do
* Pprop = o;

13



. s

W

Algorithm (trb - cont'd)

upon event <bebDeliver, src, m> and (prop = 1) do

- prop :=m;

e upon event (prop #1) do
o trigger < Propose, prop >;

e upon event < Decide, decision> do
o trigger < trbDeliver, src, decision>;

14



; P

W

Algorithm (trb);’ SrC = D2

UCons(@,p-m)| deliver(p -m)
S S——T.
broadcast(nM

crash

p2

UCons(m,(p-m) deliver(¢p -m)

p3

15



W

> » ’

Terminating Reliable Broadcast

e The TRB algorithm uses the perfect failure
detector P (i.e., P is sufficient)

e Is P also necessary?

« Is there an algorithm that implements TRB with a
failure detector that 1s strictky weaker than P?
(this would mean that P 1s not necessary)

« Is there an algorithm that uses TRB to implement
P (this would mean that P 1s necessary)

16



W

« . ‘
«

Terminating Reliable Broadcast

e We give an algorithm that implements P
using TRB; more precisely, we assume that
every process pi can use an infinite number
of instances of TRB where pi is the sender src

e 1. Every process pi keeps on
trbBroadcasting messages mil, mi2, etc

o 2. If a process pk delivers oi, pk suspects pi

17



