Final exam 2: Solution

Exam rules:
1. Exam time: from 14.15 to 17.15.
2. The exam is closed book. No electronic devices are allowed.

3. You can use any notation for algorithms, but remember to write which variables
represent shared objects (e.g., registers) and which are process-local.

4. Describe shortly the main idea behind every algorithm you give.

5. Keep in mind that only one operation on one shared object (e.g., a read or a write
of a register) can be executed by a process in a single step. To avoid confusion
(and common mistakes) write only a single atomic step in each line of an algo-
rithm.

6. The exam grade will be computed in the following way: 1.0 (for handing in the
exam) plus the number of points obtained divided by 2.

Assumptions:

1. We assume an asynchronous, shared-memory system of n processes, out of
which n — 1 might crash.

2. Unless explicitly stated otherwise, we assume that every object is atomic (lin-
earizable) and wait-free.

Good luck!

Problem 1 (2 points)

A write-once register is a shared object with the following sequential specification (x is
initially equal to L and v is always different than _L):

upon write(v)
if x = 1 then x := v
return ok

upon read()
return x

Your tasks are to:

1. Give an algorithm that implements a consensus object using any number of
write-once registers. (1 point)

2. Give an algorithm that implements a consensus object using one or more queue
objects in a system of 2 processes. (1 point)

Remark: Besides write-once registers/queues, you can use any number of atomic,
wait-free, MRMW, M-valued registers in your algorithms.

Solution. Refer to the solutions of the Exercise 4 and Exercise 5.

Problem 2 (2 points)

Give an algorithm that implements a regular, M-valued, MRSW, wait-free register us-
ing (any number of) safe, binary, MRSW, wait-free registers.

Solution. The required transformations are given in the lectures on register transfor-
mations.

Problem 3 (2 points)

An augmented queue is a shared object that implements a FIFO queue and provides the
following operations:

1. enqueue(v) that puts element v at the end of the queue,

2. dequeue() that returns the first element from the queue and removes it from the
queue, and

3. peek() that returns the first element from the queue without removing it from the
queue.

Your task is to:

1. Give an algorithm that implements wait-free consensus using (any number of)
augmented queues and registers (in a system with an arbitrary number of pro-
cesses). (1 point)

2. What is the consensus number of an augmented queue? Explain why. (1 point)

Reminder. The consensus number of an object O is the maximum number of pro-
cesses that can solve the consensus problem using any number of instances of object
O and atomic registers.

Solution. Refer to “Wait-Free Synchronization” paper (second reference on the
course web page), Section 3.4.

Problem 4 (1 point)

Consider the following (incorrect) implementation of a Fetch&Inc object out of
Test&Set objects (infinite array T) and atomic register R (initialized to 0):

uses: R - atomic register,
T[0..] - infinite array of Test&Set objects
initially: R =0

upon inc()
k := R.read();
while T[k].test&set() = 1 do k :=k + 1
R.write(k + 1);
return k + 1;
end

Describe an execution of the algorithm, in which either atomicity (i.e., linearizability)
or wait-freedom is violated.

Solution. Assume process p reads 0 from the register. Just before it invokes
test&set() on T[0] another process executes the whole inc(). function. p gets 1 from
the test&set call and increments k to 1. Just before it invokes test&set() on T[1] an-
other process executes the whole inc() function. p gets 1 from the test&set call and
increments k to 2. This can go on forever, so the algorithm is not wait-free.

Problem 5 (1 point)

A renaming object is a shared object that provides operation rename(), which, when
invoked by some process p;, returns a new unique identifier of the process from some
set D = {1,...,1}. Itis required that ! (the size of set D) is a function of the number k
of processes that actually took steps in a given execution. For example, if | = k? and
only two processes invoke operation rename(), then (a) each process should get a value
from set {1,2,3,4}, and (b) the processes cannot get the same value.

1. Prove that wait-free renaming is impossible using only (atomic) registers if the
new name space (set D) must be of size k (i.e., | = k). (Hint: there is a short
answer to this question.) (0.5 point)

2. Give an algorithm that wait-free implements an atomic renaming object using
atomic registers when [is some function of k and ! does not depend on n.
(0.5 point)

Solution.

1. If the wait-free renaming would be possible for I = k, it would be equivalent to
a strong counter object. We cannot implement a strong counter object using only
registers. This means that we cannot implement renaming with | = k using only
registers either.

2. The solution can be found in the lecture on renaming.

Problem 6 (2 points)

In the problem of agreement (i.e., consensus), each process p; proposes a value v;, and
each process p; later outputs a decision d; such that the protocol satisfies agreement,
validity, and termination. In this problem, we consider the problem of weak agreement
in which each process has a choice: it can either commit to its decision, in which case the
regular agreement property must be achieved; or it can suggest its decision, in which
case disagreement is allowed.

More formally, each process p; proposes a value v;, and each process p; outputs a
decision d; consisting of a pair (dec;, val;) where dec; can be either commit or suggest.
The protocol should satisfy the following properties:

1. Validity: Every dec; is either commit or suggest; every val; is a value v; proposed
by some process p;.

2. Agreement: If any process decides (commit, v), then every other decision is d; =
(commit,v) or (suggest, v).

3. Convergence: If every process proposes the same value v, then every process can
only decide d; = (commit, v).

https://lpd.epfl.ch/site/_media/education/ca108.pdf

4. Termination: Every correct process that proposes a value eventually outputs a
decision.

For example, if every process proposes 0, then we require every correct process to
commit to 0. On the other hand, if some processes propose 0 and other processes
propose 1, then it is possible that no process commits: some processes may suggest 0
and other processes may suggest 1. However, if any process commits to 1, then every
other process must either commit to 1 or suggest 1.

Give an algorithm that implements weak agreement using two snapshot objects,
S1 and Sy, and prove the algorithm correct.

Solution. The pseudo code of the algorithm follows:

Local variables: ai, bi, arrays of size n

S1[il.write(v)
ai := S1.snap()

x (commit, v)
else

X (suggest, v)
S2[i].write(x)
10 bi := S2.snap()
11 if every value in bi is equal to (commit, v) then
12 return (commit, v)

1
2
3
4
5 1if every value in ai is v then
6
7
8
9

13 if any value in bi is equal to (commit, v) then
14 return (suggest, v)
15 return (suggest, v).

