Self-stabilizing Spanning Tree

Peva BLANCHARD
• 1. The problem
• 2. The algorithm
• 3. Proof
 • a. Stability
 • b. Convergence
• 4. Conclusion
• 1. The problem
• 2. The algorithm
• 3. Proof
 • a. Stability
 • b. Convergence
• 4. Conclusion
Spanning-tree

Remember?
Remember?
Spanning-tree

Self-stabilizing
Self-stabilizing Spanning-tree
Spanning-tree

Self-stabilizing
Model

- nodes = processes p_0, \ldots, p_{n-1}
- directed edge (p_i, p_j): atomic RW register r_{ij}
- p_i writes to r_{ij}
- p_i reads from r_{mi}
Assumptions

- p_0 is a distinguished processor (root) and knows it
Assumptions

- \(p_0 \) is a distinguished processor (root) and knows it
- each \(p_i \) knows an ordered list \(N_i \) of its neighbours

\[N_i = (1,2,3) \]
Register r_{ij}

- boolean field $parent$:

 p_i points to $p_j \iff r_{ij}.parent = 1$

- integer field $dist$: distance from the root p_0 to p_i.

\[p_i \quad \text{parent} \quad \text{dist} \quad p_j\]
1. The problem
2. The algorithm
3. Proof
 a. Stability
 b. Convergence
4. Conclusion
The algorithm
The algorithm

EXIT

0
The algorithm
The algorithm
The algorithm

EXIT

2 ← 1 ← 0

3 ← 2 ← 1

3
The algorithm
The algorithm

See blackboard (or exercise sheet)
The algorithm

Root p_0
The algorithm

Non-root p_i

Diagram:

```
  p_i
  /|
 /  \
/    \
O-----O
 |    |
 |    |
 |    |
 |    |
O-----O
```

N_i
The algorithm

Non-root p_i
The algorithm

Non-root p_i
The algorithm

Non-root p_i

N_i
The algorithm

Non-root p_i
• 1. The problem
• 2. The algorithm
• 3. Proof
 • a. Stability
 • b. Convergence
• 4. Conclusion
Proof

Step at process p_i

- sequence of instructions until the next access to some register (read or write)
- considered atomic here

\[\text{R} \quad \text{W} \quad \text{W} \quad \text{R} \quad \text{W}\]
Proof

Execution

- (infinite) interleaving of steps of processes
- fairness assumption: every process takes infinitely many steps
Proof

Asynchronous round

- round 1: smallest prefix in which each process takes at least one step. and so on
Proof

Asynchronous round

- round 1: smallest prefix in which each process takes at least one step.
- round 2: next segment in which each process takes at least one step and so on
Proof

Asynchronous round

- round 1: smallest prefix in which each process takes at least one step.
- round 2: next segment in which each process takes at least one step
- and so on
• 1. The problem
• 2. The algorithm
• 3. Proof
 • a. Stability
 • b. Convergence
• 4. Conclusion
Proof - Stability

Configuration

- for each p_i, values of local variables lr_{mi}, F, $dist$
- register values r_{ij} for all p_i,p_j
- program counter: each process may not start at the beginning of the pseudo-code!
Proof - Stability

Legitimate configuration

- encodes a spanning tree rooted at p_0
- distance values in each r_{ij} is correct
- the parent p_j of p_i is the first process in N_i with minimal distance
Proof - Stability

- no process is inclined to change parent or distance
- the set of legitimate configurations is stable
1. The problem
2. The algorithm
3. Proof
 a. Stability
 b. Convergence
4. Conclusion
Proof - Convergence

Strategy: from an arbitrary initial configuration

- Each register r_{ij} eventually holds the correct distance from the root to p_i
- Then, each process p_i selects the first valid parent in $N_i \Rightarrow$ this yields a legitimate configuration
Strategy: from an arbitrary initial configuration

- Each register r_{ij} eventually holds the correct distance from the root to p_i
- Then, each process p_i selects the first valid parent in $N_i \Rightarrow$ this yields a legitimate configuration
Proof - Convergence

Lemma

Let $\Delta = \text{max. nb of neighbours}$. In every 2Δ successive rounds, each $p_i \neq p_0$ performs “one loop in the pseudo-code”.

\[\Delta \]

- read from r_{ij}

\[\Delta \]

- write to r_{mi}
Definition
A *floating distance* in configuration C is a value in some field $r_{ij}.dis$ that is smaller than the distance from the root to p_i.

```
parent: *
  dist: 3
real dist = 6
```
Proof - Convergence

Lemma
Let E_k be the suffix of execution after the first $\Delta + 4k\Delta$ rounds.

- $(\text{Small}(k))$ For any $C \in E_k$, if C has a floating distance, then the smallest floating distance in C is $\geq k$
- $(\text{Dist}(k))$ For any $C \in E_k$, the distance values in registers of processes within distance k from the root are correct
Proof - Convergence

By induction: E_1 after $\Delta + 4\Delta$ rounds ($k = 1$)

- each distance field is ≥ 0 in the first (arbitrary) configuration
- Proc $p_i \neq p_0$
 - during the first 2Δ rounds, each non-root p_i computes $dist$: $dist \geq 1$
 - in the next 2Δ rounds, each non-root p_i writes $dist$ to its registers r_{ij}

\Rightarrow afterwards, always $r_{ij} \geq 1$ for all j. In particular, Small(1) holds
Proof - Convergence

By induction: E_1 after $\Delta + 4\Delta$ rounds $(k = 1)$

- each distance field is ≥ 0 in the first (arbitrary) configuration
- root p_0
 - first Δ rounds: p_0 writes 0 in every r_{0j}
 - in the next 2Δ rounds, each root’s neighbour p_j reads 0 in r_{0j}
 - in the next 2Δ rounds, each root’s neighbour p_j writes 1 to their registers distance fields.

\Rightarrow Dist(1) holds
Proof - Convergence

Assume $Small(k)$ and $Dist(k)$ hold in E_k.

- Let C_k first config of E_k
- $m \geq k$ smallest floating distance in C_k
- In the next 4Δ rounds after C_k, each proc that chooses m as the smallest value assigns $m+1$ to its distance
- Thus, afterwards, smallest floating distance $\geq m+1 \geq k+1$

\Rightarrow Small(k+1) holds in E_{k+1}
Proof - Convergence

Assume $Small(k)$ and $Dist(k)$ hold in E_k.

- Dist(k) holds in E_k: every proc within distance k from the root have registers with correct distance
- Let p_i be proc at distance $k + 1$
- In the next 4Δ rounds after C_k : p_i necessarily chooses value k, and assigns $k + 1$ to its register distance fields.

\Rightarrow Dist(k+1) holds in E_{k+1}
• 1. The problem
• 2. The algorithm
• 3. Proof
 • a. Stability
 • b. Convergence
• 4. Conclusion
Conclusion

Assumptions

- n processes, with a root p_0
- bidirectional communication with rw register r_{ij}
- each p_i knows a an ordered list of its neighbours
- each process takes infinitely many steps

\Rightarrow the algorithm is self-stabilizing