4.5.2 From regular bits to regular b-valued registers
Overview A way to build a 1WMR regular b-valued register R from regular bits is to employ unary encoding. Considering an array REG[1 : b] of 1WMR regular bits, the value v ∈ [1..b] is represented by 0s in bits 1 through v − 1 and 1 in the vth bit.
The algorithm is described in Figure 4.8. The key idea is to write into the array REG[1 : b] in one direction, and to read it in the opposite direction. To write v, the writer first sets REG[v] to 1, and then “cleans” the array REG. The cleaning consists in setting the bits REG[v − 1] until REG[1] to 0. To read, a reader traverses the array REG[1 : b] starting from its first entry (REG[1]) and stops as soon as it discovers an entry j such that REG[j] = 1. The reader then returns j as the result of the read operation. It is important to see that a read operation starts reading first the “cleaned” part of the array. On the other hand, the writing is performed in the opposite direction, from v − 1 until 1.
It is also important to notice that, even when no write operation is in progress, it is possible that several entries of the array be equal to 1. The value represented by the array is then the value v such that REG[v] =
1 and for all the entries 1 ≤ j < v we have REG[j] = 0. Those entries are then the only meaningful entries.
The other entries can be seen as a partial evidence on past values of the constructed register.
The algorithm assumes that the register R has an initial value, say v. The array REG[1 : b] is accord- ingly initialized, i.e., REG[j] = 0 for 1 ≤ j < v, REG[v] = 1, and REG[j] = 0 or 1 for v < j ≤ b.
operation R.write(v):
REG[v] ← 1;
for j from v − 1 step −1 until 1 do REG[j] ← 0 end do;
return ()
operation R.read() issued by pi :
j ← 1;
while (REG[j] = 0) do j ← j + 1 end do;
return (j)
Figure 4.8: Regular register: from bits to b-valued register
Two observations are in order:
1. In the writer’s algorithm, once set to 1, the “last” base register REG[b] keeps that value forever. In a sense, setting this register to 1 makes it useless: the writer never writes in it again, and when it has to read it, a reader might by default consider its value to be 1.
2. The reader’s algorithm does not write base registers. This means that the algorithm handles any number of readers. Of course, the base registers have to be 1WMR if there are several readers (as each reader reads the base registers), and can be 1W1R when there a single reader is involved.
Space complexity The memory cost of the transformation algorithm is b base bits, i.e., it is linear with respect to the size of the value range of the constructed register R. This is a consequence of the unary encoding of these values (Let B be the number of bits required to obtain a binary representation of a value of R. It is important to see that, as B = log2 (b), the cost of the construction is exponential with respect to this number of bits.)
Lemma 1 Consider the algorithm of Figure 4.8. Any R.read() or R.write() operation terminates. More- over, the value v returned by a read belongs to the set {1, . . . , b}.
Proof A R.write() operation trivially terminates (as by definition the for loop always terminates). For the termination of the R.read() operation, let us first make the following two observations:
• At least one entry of the array REG is initially equal to 1. Then, it follows from the write algorithm that each time the writer changes the value of a base register REG[x] from 1 to 0, it has previously set to 1 another entry REG[y] such hat x < y ≤ b.
Consequently, if the writer updates REG[x] from 1 to 0 while concurrently the reader reads REG[x]
and obtains the new value 0, we can conclude that a higher entry of the array has the value 1.
• If, while its previous value is 1, the reader reads REG[x] and concurrently the writer updates REG[x]
to the same value 1, the reader obtains value 1, as the base register is regular . (If the base register was only safe, the reader could obtain value 0.)
It follows from these observations that a sequential scanning of the array REG (starting at REG[1]) neces- sarily encounters en entry REG[v] whose reading returns 1. As the running index of the while loop starts at
1 and is increased by 1 each time the loop body is executed, it follows that the loop always terminates, and the value j it returns is such that 1 ≤ j ≤ b. ✷Lemma 1
Remark The previous lemma relies heavily on the fact that the high-level register R can contain only b distinct values. The lemma would no longer be true if the value range of R was unbounded. A R.read() operation could then never terminate in case the writer continuously writes increasing values. To illustrate that, consider the following scenario. Let R.write(x) be the last write operation terminated before the operation R.read(), and assume there is no concurrent write operation R.write(y) such that y < x. It is possible that, when it reads REG[x], the reader finds REG[x] = 0 because another R.write(y) operation (with y > x) updated REG[x] from 1 to 0. Now, when it reads REG[y], the reader finds REG[y] = 0 because another R.write(z) operation (with z > y) updated REG[y] from 1 and so on. The read can then never terminate.
Theorem 8 Given b 1WMR regular bits, the algorithm described in Figure 4.8 implements a 1WMR b- valued regular register.
Proof Let us first consider a read operation that is not concurrent with any write, and let v the last written value. It follows from the write algorithm that, when R.write(v) terminates, the first entry of the array that equals 1 is REG[v] (i.e., REG[x] = 0 for 1 ≤ x ≤ v − 1). Because a read traverses the array starting from REG[1], then REG[2], etc., it necessarily reads until REG[v] and returns accordingly the value v.
R.write(v0)
R.write(v1)
R.write(v2)
R.write(vm)
R.read()
Figure 4.9: A read with concurrent writes
Let us now consider a read operation R.read() that is concurrent with one or more write operations R.write(v1), ..., R.write(vm) (as depicted in Figure 4.9). Moreover, let v0 be the value written by the last write operation that terminated before the operation R.read() starts (or the initial value if there is no such write operation). As a read operation always terminates (Lemma 1), the number of write operations
concurrent with the R.read() operation is finite. We have to show that the value v returned by R.read() is one of the values v0, v1, ..., vm. We proceed with a case analysis.
1. v < v0.
No value that is both smaller than v0 and different from vx (1 ≤ x ≤ m) can be output. This is because
(1) R.write(v0) has set to 0 all entries from v0 − 1 until the first one, and only a write of a value vx can
set REG[vx] to 1; and (2) as the base registers are regular, if REG[v′] is updated by a R.write(vx)
operation from 0 to the same value 0, the reader cannot concurrently reads REG[v′] = 1. It follows from that observation that, if R.read() returns a value v smaller than v0 , then v has necessarily been
written by a concurrent write operation, and consequently R.read() satisfies the regularity property.
2. v = v0.
In this case, R.read() trivially satisfies the regularity property. Notice that it is possible that the corresponding write operation be some R.write(vx) such that vx = v0 .
3. v > v0.
From v > v0, we can conclude that the read operation obtained 0 when it read REG[v0]. As REG[v0] was set to 1 by R.write(v0), this means that there is a R.write(v′) operation, issued af- ter R.write(v0) and concurrent with R.read(), such that v′ > v0 , and that operation has executed REG[v′] ← 1, and has then set to 0 at least all the registers from REG[v′ − 1] until REG[v0]. We consider three cases.
(a) v0 < v < v′.
In this case, as REG[v] has been set to 0 by R.write(v′), we can conclude that there is a
R.write(v), issued after R.write(v′) and concurrent with R.read(), that updated REG[v] from
0 to 1. The value returned by R.read() is consequently a value written by a concurrent write operation. The regularity property is consequently satisfied by R.read().
(b) v0 < v = v′.
The regularity property is then trivially satisfied by R.read(), as R.write(v′) and R.read() are concurrent.
(c) v0 < v′ < v.
In this case, R.read() missed the value 1 in REG[v′]. This can only be due to a R.write(v′′) operation, issued after R.write(v′) and concurrent with R.read(), such that v′′ > v′ , and that operation has executed REG[v′′] ← 1, and has then set to 0 at least all the registers from REG[v′′ − 1] until REG[v′].
We are now in the same situation as the one described at the beginning of item 3, where v0 and R.write(v′) are replaced by v′ and R.write(v′′). As (a) the number of values between v0 and b is finite and (b) the read operation R.read() terminates, if follows that this operation eventually terminates in 3a or 3b, which completes the proof of the theorem.
✷T heorem 8
A counter-example for atomicity
Figure 4.10 shows that, even if all base registers are atomic, the algo- rithm we just presented (Figure 4.8) does not implement an atomic b-valued register.
Let us assume that b = 5 and the initial value of the register R is 3, which means that we initially have
REG[1] = REG[2] = 0, REG[3] = 1 and REG[4] = REG[5] = 0. The writer issues first R.write(1)
and then R.write(2). There are concurrently two read operations as indicated on the figure. The first read operation returns value 2 while the second one returns value 1: there is a new/old inversion. The last line of the figure depicts a linearization order S of the read and write operations on the base binary registers. (As we can see, each base object taken alone is linearizable. This follows from the fact that linearizability is a local property, see the first chapter).
R.write(1)
REG[1] ← 1

R.write(2)
REG[2] ← 1
REG[1] ← 0
R.read()
REG[1] = 0
REG[2] = 1
R.read()
REG[1] = 1
Figure 4.10: A counter-example for atomicity
4.5.3 From atomic bits to atomic b-valued registers
As just seen, the algorithm of Figure 4.8 does not work if the goal is to build a b-valued atomic register from atomic bits. Interestingly, a relatively simple modification of its read algorithm makes that possible by preventing the new/old inversion phenomenon.
Overview The idea consists in decomposing a R.read() operation in two phases. The first phase is the same as in the read algorithm of Figure 4.8 : base registers are read in ascending order, until an entry equal to 1 is found; let j be that entry. The second phase traverses the array in the reverse direction (from j to
1), and determines the smallest entry that contains value 1: this is then returned. So, the returned value is determined by a double scanning of a “meaningful” part of the REG array.
The new algorithm is given in Figure 4.11. To understand the underlying idea, let us consider the first R.read() operation depicted in Figure 4.10. After it finds REG[2] = 1, the reader changes its scanning direction. The reader then finds REG[1] = 1 and returns consequently value 1. In the figure, the second read obtains 1 in REG[1] and consequently returns 1. This shows that, in the presence of concurrency, this construction does not strive to eagerly return a value. Instead, value v returned by a read operation has to be “validated” by an appropriate procedure, namely, all the “preceding” base registers REG[v − 1] until REG[1] have to be found equal to 0 when rereading them.
Theorem 9 Given b 1WMR atomic bits, the algorithm described in Figure 4.11 implements a 1WMR atomic
b-valued register.
Proof The proof consists in two parts: (1) we first show that the implemented register is regular, and then
(2) we show that it does not allow for new/old inversions. Applying Theorem 10 proves then that the con-
operation R.write(v):
REG[v] ← 1;
for j from v − 1 step −1 until 1 do REG[j] ← 0 end do;
return ()
operation R.read() issued by pi :
j up ← 1;
(1) while (REG[j up] = 0) do j up ← j up + 1 end do; (2) j ← j up;
(3) for j down from j up − 1 step −1 until 1 do
(4)

if (REG[j down] = 1) then j ← j down end if end do;
return (j)
Figure 4.11: Atomic register: from bits to b-valued register
structed register is a 1WMR atomic register.
Let us first show that the implemented register is regular. Let R.read() be a read operation and j the value it returns. We consider two cases:
• j = j up (j is determined at line 2).
The value returned is then the same as the one returned by the algorithm described in Figure 4.8. It follows from theorem 8 that the value read is then either the value of the last preceding write or the new value of an overlapping write.
• j < j up (j is determined at line 4; let us observe that, due to the construction, the case j > j up
cannot happen).
In that case, the read found REG[j] = 0 during the ascending loop (line 1), and REG[j] = 1 during the descending loop (line 4). Due to the atomicity of the base REG[j] register, this means that a write operation has written REG[j] = 1 between these two readings of that base atomic register. It follows that the value j returned has been written by a concurrent write operation.
R.write(v)
R.write(v′)
pw
r1 = R.read()
r2 = R.read()
pr
Figure 4.12: There is no new/old inversion
To show that there is no new/old inversion, let us consider Figure 4.12. There are two write operations, and two read operations r1 and r2 that are concurrent with the second write operation. (The fact that the read operations are issued by the same process or different processes is unimportant for the proof.) As the constructed register R is regular, both read operations can return v or v′ . If the first read operation r1 returns v, the second read can return either v or v′ without entailing a new/old inversion. So, let us consider the case where r1 returns v′. We show that the second read r2 returns v′′ , where v′′ is v′ or a value written by a more recent write concurrent with this read. If v′′ = v′, then there is no new/old inversion. So, let us
consider v′′ = v′ . As r1 returns v′ , r1 has sequentially read REG[v′] = 1 and then REG[v′ − 1] = 0 until REG[1] = 0 (lines 2-4). Moreover, r2 starts after r1 has terminated (r1 →H r2 in the associated history H).
1. v′′ < v′. In that case, a write operation has written REG[v′′] = 1 after r1 has read REG[v′′] = 0 (at line 4) and before r2 reads REG[v′′] = 1 (at line 2 or 4) with 1 ≤ v′′ < v′ . It follows that this write operation is after R.write(v′) (there is a single sequential writer, and r1 returns v′). Consequently, r2 obtains a value newer than v′, hence newer than v: there is no new/old inversion.
2. v′′ > v′ . In that case, r2 has read 1 from REG[v′′] and then 0 from REG[v′] (line 4). As r1 terminates (reading REG[v′] = 1 and returning v′) before r2 starts, and write operations are sequential, it follows that there is a write operation, issued after R.write(v′), that has updated REG[v′] from 1 to 0.
(a) If that operation is R.write(v′′), we conclude that the value v′′ read by r2 is newer than v′ , and there is no new/old inversion.
(b) If that operation is not R.write(v′′), it follows that there is another operation R.write(v′′′), such that v′′′ > v′, that has updated REG[v′] from 1 to 0, and that update has been issued after R.write(v′) (that set REG[v′] to 1), and before r2 reads REG[v′] = 0.
Moreover, R.write(v′′′) is before R.write(v′′) (otherwise, the update of REG[v′] from 1 to 0
would have been done by R.write(v′′)).
It follows that R.write(v′′′) is after R.write(v′) and before R.write(v′′), from which we con- clude that v′′ is newer than v′, proving that there is no new/old inversion.
✷T heorem 9

