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Abstract

This report details the design of two new concurrent data structures, a hash table, called CLHT,
and a binary search tree (BST), called BST-TK. Both designs are based on asynchronized concur-
rency (ASCY), a paradigm consisting of four complementary programming patterns. ASCY calls
for the design of concurrent search data structures to resemble that of their sequential counter-
parts. CLHT (cache-line hash table) uses cache-line-sized buckets and performs in-place updates.
As a cache-line block is the granularity of the cache-coherence protocols, CLHT ensures that most
operations are completed with at most one cache-line transfer. BST-TK reduces the number of
cache-line transfers by acquiring less locks than existing BSTs.

1 Introduction

A search data structure consists of a set of elements and an interface for accessing and manipulating
these elements. The three main operations of this interface are a search operation and two update
operations (one to insert and one to delete an element), as shown in Figure |1} Search data structures
are said to be concurrent when they are shared by several processes. Concurrent search data structures
(CSDSs) are commonplace in today’s software systems. For instance, concurrent hash tables are crucial
in the Linux kernel [I0] and in Memcached [12], while skip lists are the backbone of key-value stores
such as RocksDB [8]. As the tendency is to place more and more workloads in the main memory of
multi-core machines, the need for CSDSs that effectively accommodate the sharing of data is increasing.

Nevertheless, devising CSDSs that scale and leverage the underlying number of cores is challeng-
ing [II 2, 4, O 13]. Even the implementation of a specialized CSDS that would scale on a specific
platform, with a specific performance metric in mind, is a daunting task. Optimizations that are con-
sidered effective on a given architecture might not be revealed as such on another [, [6]. For example,
NUMA-aware techniques provide no benefits on uniform architectures [6]. Similarly, if a CSDS is
optimized for a specific type of workload, slightly different workloads can instantly cause a bottleneck.
For instance, read-copy update (RCU) [11] is extensively used for designing CSDSs that are suitable
for read-dominated workloads. However, it could be argued that this is achieved at the expense of
scalability in the presence of updates.

Motivated by the aforementioned issues, we recently conducted a thorough evaluation and analysis
of CSDSs on modern hardware [5]. This work resulted in asynchronized concurrency (ASCY), a
paradigm consisting of four complementary programming patterns. ASCY calls for the design of
CSDSs to resemble that of their sequential counterparts. The four patterns are the following:

ASCY: The search operation should not involve any waiting, retries, or stores.

ASCYj,: The parse phase of an update operation should not involve any stores other than for cleaning-
up purposes and should not involve any waiting, or retries.

ASCY3: An update operation whose parse is unsuccessful (i.e., the element not found in case of a
remove, the element already present in case of an insert) should not perform any stores, besides
those used for cleaning-up in the parse phase.
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Figure 1: Search data structure interface. Updates have two phases: a parse phase, followed by a
modification phase.
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ASCY,: The number and region of memory stores in a successful update should be close to those of
a standard sequential implementation.

In addition, we showed how (i) the four rules can be simultaneously applied on existing CSDSs,
and (ii) when they are applied they lead to designs that are portably scalable (i.e., they scale across
hardware platforms, various workloads, and for different performance metrics, such as throughput and
energy efficiency). Naturally, an interesting question to ask is whether ASCY can help in the design
of new CSDS algorithms.

This report shows that ASCY can indeed help in the design of very efficient, novel concurrent data
structures. In short, we detail the design of a concurrent hash table (CLHT) and a concurrent binary
search tree (BST-TK). Both algorithms follow ASCY and outperform existing state of the art CSDSs.

CLHT takes its name from cache-line hash table, as it tries to put one bucket per cache line. Doing
S0, CLHT, in the common case, requires at most one cache-line transfer to complete an operation. The
key ideas behind CLHT are (i) in-place updates of key/value pairs, and (ii) parsing the bucket with a
snapshot of key/value pairs. CLHT comes in two variants, one lock-based and one lock-free.

BST-TK stands for BST Ticket, as it cleverly uses ticket locks both for locking and for keeping
track of version numbers of nodes. In short, BST-TK parses the tree in a wait-free manner, thus search
operations are wait-free. Insertions and removals parse the tree and then lock one and two nodes
respectively. Parsing involves keeping track of the version number of the nodes, so that once the node
is locked, the version can be validated in order to avoid concurrent conflicting modifications. We
modify the interface of ticket locks so that the lock acquisition involves the version number of the
node. Accordingly, we are able to perform locking and validate the version in a shingle step.

2 CLHT, Cache-Line Hash Table

The cache-line transfers triggered by the cache-coherence protocols are one of the largest impediments
to software scalability on modern multi-cores [6]. Accordingly, concurrent software should aim at
minimizing the amount of generated coherence traffic. This result can be achieved by reducing the
number of cache lines that are being Writterﬂ The four ASCY patterns steer CSDSs towards precisely
this direction by bringing them as close to their sequential counterparts as possible.

CLHT aims at reducing the number of cache-line transfers to the absolute minimum. Intuitively,
when an update operation is completed (e.g., a new key/value pair is inserted in the hash table), at
least one write on shared state has to be performed. Additionally, the granularity of coherence is one
cache line, that is 64 bytes on most modern multi-cores. CLHT tries to complete operations with at
most one cache-line transfer by using cache lines as buckets:

#define ENTRIES_PER_BUCKET 3

typedef uintptr_t clht_key_t;
typedef volatile uintptr_t clht_val_t;

struct bucket
{

uint64_t concurrency; // used for synchronization
clht_key_t key[ENTRIES_PER_BUCKET];

clht_val_t val [ENTRIES_PER_BUCKET];

struct bucket* next; // used to link buckets

A bucket consists of three key/value pairs (i.e., six words) and two words, one for linking buckets
and one for implementing synchronization (e.g., a lock). Based on this bucket structure, it is straight-
forward to design a lock-based hash table that protects all three operations (i.e., search, insert, remove)
with a lock. However, ASCY; explicitly suggests that search operations should not perform any stores.
Consequently, the search operation of CLHT needs to parse the keys of the buckets and return without
any synchronization. To achieve this, parsing the bucket must do more than just comparing the given
key to the bucket’s keys: an atomic snapshot of each key/value pair is taken. The atomic snapshot

1Recall that coherence traffic is mainly generated by a thread that needs to write on some data that are cached on a
remote core.
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/* Retrieve a key-value entry from CLHT-LB */
clht_val_t
clht_search(clht_hashtable_t* hashtable, clht_addr_t key)

{
size_t bin = clht_hash(hashtable, key);
volatile bucket_t* bucket = hashtable->table + bin;
uint32_t j;
do
{
for (j = 0; j < ENTRIES_PER_BUCKET; j++)
{
clht_val_t val = bucket->vall[j];
if (bucket->key[j]l == key)
{
if (bucket->vall[j] == val)
{
return val;
else
{
return 0;
}
}
}
bucket = bucket->next;
}
while (bucket != NULL);
return O;
}

Figure 2: Search operation of CLHT-LB.

guarantees that if a search finds the target key, the value that it will return corresponds to that key
and not to a concurrent modification. The atomic snapshot can be easily taken with:

clht_val_t val = bucket->vall[il;

if (bucket->key[i] == key && bucket->vall[i] == val)
¢ //we have an atomic snapshot of key[il] and vall[il]
}

The only requirement to be able to use the code snippet above is that the same value cannot be
reused by a concurrent operation throughput the lifespan of the current operation. Otherwise, the
current operation might read val, compare the key, and then return the val that has been removed
and re-inserted by a concurrent operation. In CLHT, the aforementioned requirement is provided by
the garbage collection of the SSMEM memory allocator [5].

Based on the aforementioned ideas, we develop two variants of CLHT, lock-based (CLHT-LB) and
lock-free (CLHT-LF).

2.1 CLHT-LB, the lock-based variant of CLHT

CLHT-LB uses the concurrency word of a bucket as a lock. The design and implementation is quite
straightforward.

Search operation. Figure 2| contains the code of the search operation. Lines 5-6 find the cor-
responding bucket for the given key. Lines 9-29 parse the bucket using atomic snapshots for each
key/value pair. If the end of the bucket is reached, the operation tries to follow any linked buckets
(Lines 27-29).

Insert operation. Figure 3| contains the code of the insert operation. Lines 8-11 implement read-
only unsuccessful insertions (ASCY3). The bucket_exists function is not shown, but is almost
identical to the clht_search operation. Lines 23-35 traverse the bucket and either return false (if
the key is found), or keep track for a potential empty spot for the insertion. In Lines 37-53, if there is
no next bucket (i.e., there is no reason to keep searching), the new key/value pair is inserted, maybe
after expanding the bucket in case there is no space left in the existing ones.
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/* Insert a key-value entry into CLHT-LB. x*/

int

clht_insert (clht_hashtable_t* hashtable,

{
size_t bin = clht_hash(hashtable,

bucket_t* bucket =

if (bucket_exists (bucket,
{
return false;

}
clht_lock_t* lock =

clht_addr_t* empty =
clht_val_t* empty_v =

NULL ;
NULL ;

uint32_t j;

LOCK_ACQ(lock);
do
{
for (j = 0;
{
if (bucket->key[j]
{
LOCK_RLS (lock);
return false;

}

&bucket ->lock;

j < ENTRIES_PER_BUCKET;

== key)

clht_addr_t key,

key) ;
hashtable->table + bin;

key)) //implement read-only fail (ASCY3)

j++)

else if (empty == NULL && bucket->key[j]l == 0)

{
empty =
empty_v =
}
}

if (bucket->next ==
{
if (empty == NULL)
{
bucket ->next =
bucket ->next->key [0]
bucket ->next->val [0]
}
else
{
*empty_v = val;
*empty = key;
}

LOCK_RLS (lock) ;
return true;

}

bucket = bucket->next;
} while (true);

Figure 3: Insert operation of CLHT-LB.

&bucket ->key [j];
Zbucket->val[j];

clht_bucket_create () ;

key;
val;

clht_val_t val)
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/* Remove a key-value entry from CLHT. x*/
clht_val_t
clht_remove (clht_hashtable_t* hashtable, clht_addr_t key)
{
size_t bin = clht_hash(hashtable, key);
bucket_t* bucket = hashtable->table + bin;

if (!bucket_exists (bucket, key))
{
return false;

}

clht_lock_t* lock = &bucket->lock;
uint32_t j;

LOCK_ACQ(lock);

do
{
for (j = 0; j < ENTRIES_PER_BUCKET; j++)
{
if (bucket->key[j]l == key)
{
clht_val_t val = bucket->vall[j];
bucket ->key[j] = 0;
LOCK_RLS (lock) ;
return val;
}
}
bucket = bucket->next;
} while (bucket != NULL);

LOCK_RLS (lock) ;
return false;

}

Figure 4: Remove operation of CLHT-LB.

Remove operation. Figure [4| contains the code of the remove operation. The code for removals is
pretty straightforward. Lines 8-11 implement read-only unsuccessful removals (ASCY3). Lines 17-30
traverse the key/value pairs and if the key is found, it is removed from the hash table.

2.1.1 Correctness sketch

Search operations access the key/value pairs with a snapshot, thus, when the value is returned in Line
18 of Figure [2] it is certain that it is the result of a correct key/value pair insertion. In particular,
we can take a key/value snapshot because (i) the values that can be seen during the lifespan of an
operation are uniqueE] and (ii) insertions first write the value and then the key when inserting a new
key /value pair.

If the validation of the value fails (Lines 20-23), the operation can return 0. Since the key was
found, but the snapshot fails, we know that there is at least one concurrent to this search removal
(otherwise, without a concurrent removal the snapshot cannot fail, because an insertion first writes
the value and then the key). We can simply select the linearization point of the search to be before
the linearization point of the concurrent removal and before any possible insertion of the same key.

Finally, following a linked bucket does not change the game in terms of correctness. Since word-
sized writes to the memory are atomic, when the search operation loads the bucket->next pointer,
it will either find a non-NULL next pointer or not. Even if there is a concurrent insertion of the target
key, the linearization point of search can be placed either before or after the insertion, depending on
whether it observes the next pointer.

Insert operations might return 0 without ever acquiring the lock (Line 10 of Figure . Doing
so is correct, because it is equivalent to performing a search operation that did find the key in the
bucket. The actual insertions are protected by the lock, so their correctness is obvious as no concurrent
updates are allowed.

2Tt is impossible to see value A twice because it was removed and then reused. This is guaranteed by the memory
allocator which supports garbage collection.



Removals are correct based on the exact same reasoning as insertions.

2.1.2 Liveness

Search operations are clearly wait-free if we assume that buckets do not become infinitely long due
to linking. In theory, this assumption is valid because we have a limited key space: keys are 64-bits
long. In practice, the length of the buckets is kept short to optimize for performance (see “Resizing”
below). Update operations are blocking as they rely on locks.

2.1.3 Resizing

CLHT-LB supports resizing. In Figure |3 a insertion that does not find an empty spot in the bucket
simply expands the last bucket. Nevertheless, these expansions can make the buckets pretty lengthy,
which is suboptimal in terms of performance. Accordingly, CLHT-LB keeps track of the number of
total bucket expansions and when it is above a threshold, an actual hash-table resize is triggered.

The implementation of resizing is quite simple: a single thread traverses the buckets, acquires
the locks and copies the contents one bucket after the other. Traversing the hash table is quite fast,
because the main hash table is an array of buckets (i.e., accessing the data is sequential). Notice that
concurrent search operations are unaware of the resize operation and can complete normally.

We also implement helping with multiple threads: when a thread finds a lock occupied due to a
resize, it can help with resizing. However, our evaluation shows that helping is beneficial only with very
large hash tables. On smaller hash tables, the cost of synchronizing the helper threads outweighs the
performance benefits (recall that sequential memory accesses are extremely fast on modern hardware,
hence a single thread can resize the hash table very efficiently).

2.1.4 Flavors

We implement various variants of CLHT-LB with different characteristics, mainly when it comes to
how full buckets are handled. The most important “flavors” of CLHT-LB are:

e A variant that does not include bucket->next pointers. Instead, when a bucket is full, a hash-
table resize is immediately triggered. This variant has the benefit of keeping the buckets short,
but might result in a low-occupancy hash table.

e A variant where the buckets are linked to their next buckets (by to by, by to ba, ...), so that if
there is no space in a bucket, the next one is used. If the hash table is too full, it is resized. This
variant can achieve very high occupancy of the hash table.

e A variant where remove operations do not acquire the lock, but perform the removal using a
compare-and-swap on the key. This variant can give slightly better performance than the default
one, but makes hash-table resizing more complicated.

2.2 CLHT-LF, the lock-free variant of CLHT

Synchronizing updates in CLHT-LB is straightforward: when a thread wants to perform a modification,
it grabs the lock and atomically performs the changes. However, to create a lock-free version of CLHT,
namely CLHT-LF, we need to discard those per-bucket locks. Without locks, the coordination of
updates becomes quite complex.

A first idea could be to use compare-and-swap (CAS) for modifying the keys of the bucket. For
instance, an insertion could CAS the target spot from empty to the required key. Clearly, this solution
would cause atomicity problems for inserting both the key and the value. Additionally, if we do not
explicitly coordinate concurrent insertions in the same bucket, we might end up with duplicate keys,
inserted by two concurrent operations.
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To solve this problem, we introduce the clht_snapshot_t structure:

typedef union

{
volatile uint64_t snapshot;
struct
{

uint32_t version;
uint8_t map [ENTRIES_PER_BUCKET];
Y
} clht_snapshot_t;

clht_snapshot_t is 8-bytes long and can thus be loaded, stored, or CASed with a single operation
(i.e., atomically). It contains a version number and a map. The version number is used to synchronize
concurrent modifications, while the map is used to indicate whether the corresponding index in the
bucket is valid, invalid, or if it is being inserted.

Figure [5| contains the interface of clht_snapshot_t. snap_get_empty_index find the index of the
first, if any, empty spot in the snapshot structure. snap_set_map simply sets the value of the given
index to the provided value. Finally, snap_set map_and_inc_version also sets the value of the given
index, but it further increments the version number by one. We use the interface of clht_snapshot_t
in the design of CLHT-LF.

CLHT-LF’s bucket uses the snapshot structure instead of CLHT-LB’s lock:
typedef volatile struct ALIGNED (CACHE_LINE_SIZE) bucket_s
¢ union

{

volatile uint64_t snapshot;
struct
{
uint32_t version;
uint8_t map [ENTRIES_PER_BUCKET];
i
I8
clht_addr_t key[ENTRIES_PER_BUCKET]; clht_val_t val [ENTRIES_PER_BUCKET];
} bucket_t;

static inline int
snap_get_empty_index (uint64_t snap)

{
clht_snapshot_t s = { .snapshot = snap };
int 1i;
for (i = 0; i < ENTRIES_PER_BUCKET; i++)
{
if (s.map[i] == MAP_INVLD)
{
return ij;
}
}
return -1;
}

static inline uint64_t
snap_set_map(uint64_t s, int index, int val)
{
clht_snapshot_t s1 = { .snapshot = s };
sl.map[index] = val;
return sl.snapshot;

}

static inline uint64_t
snap_set_map_and_inc_version(uint64_t s, int index, int val)
{

clht_snapshot_t s1 = { .snapshot = s};

s1l.map[index] = val;

sl.version++;

return sl.snapshot;

Figure 5: Interface for manipulating c1ht_snapshot_t structures.
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static inline clht_val_t
clht_bucket_search(bucket_t* bucket, clht_addr_t key)

{
int i;
for (i = 0; i < KEY_BUCKT; i++)
{
clht_val_t val = bucket->vall[il;
if (bucket->map[i] == MAP_VALID)
{
if (bucket->key[i] == key)
{
if (bucket->vall[i] == val)
{
return val;
else
{
return O0;
}
}
}
}
return O;
}

/* Retrieve a key-value entry CLHT-LF. x*/
clht_val_t
clht_get (clht_hashtable_t* hashtable, clht_addr_t key)

{
size_t bin = clht_hash(hashtable, key);
bucket_t* bucket = hashtable->table + bin;
return clht_bucket_search(bucket, key);

}

Figure 6: Search operation of CLHT-LF.

Search operation. Figure [6] contains the code of the search operation. clht_get is based on the
clht bucket_search operation. This operation is similar to CLHT-LB’s search operation. However,
the snapshot includes not only the key and the value, but also the clht_snapshot_t’s map for the
corresponding index. If the map does not contain the valid flag, the current key/value pair can be
simply ignored.

Insert operation. Figure [7| contains the code of the insert operation. Line 12 contains the jump
target in case the insertion must be restarted. The first thing a try does is to get the current snapshot
of the bucket (Line 13). Lines 15-22 implement the read-only unsuccessful insertion (ASCY3). The
empty_index variable indicates the empty index that might have been “acquired” from a previous try.
If there is such, then the empty is index is “released” in Line 19.

If the key is not found in the bucket (Lines 23+) and if there is no empty_index held from a
previous try, then the snapshot is inspected for empty spots (Lines 24-26). If an empty spot is found,
the map [empty_index] is set to MAP_INSRT to indicate that a new key/value pair is being inserted to
this spot. If either finding an empty spot, or changing the snapshot with the updated value (Line 32)
fails, the operation is restarted.

If empty_index is greater or equal to 0 in Line 24, then the snapshot is updated in Line 43, as there
is no need to look for a new empty spot. In short, the MAP_INSRT intermediate value is similar to a
lock, with the main difference that it does not prohibit the other threads to complete their operations
on other spots in a bucket.

Finally, in Lines 46-47, the thread tries to set the map [empty_index] to valid and to increment
the version number. If it fails, the operation is restarted, otherwise, the operation is completed.
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/* Insert a key-value entry into CLHT-LF. */

i
c

{

}

nt
lht_put (clht_t* h, clht_addr_t key, clht_val_t val)
clht_hashtable_t* hashtable = h->ht;
size_t bin = clht_hash(hashtable, key);
bucket_t* bucket = hashtable->table + bin;
int empty_index = -1;
clht_snapshot_all_t s, si;
retry:
s = bucket->snapshot;
if (clht_bucket_search(bucket, key) != 0)
{
if (empty_index >= 0)
{
bucket ->map [empty_index] = MAP_INVLD;
}
return false;
}
if (empty_index < 0)
{
empty_index = snap_get_empty_index(s);
if (empty_index < 0)
{
goto retry;
}
sl = snap_set_map(s, empty_index, MAP_INSRT);
if (CAS_U64 (&bucket->snapshot, s, sl1) != s)
{
empty_index = -1;
goto retry;
}
bucket ->val [empty_index] = val;
bucket ->key [empty_index] = key;
else
{
sl = snap_set_map(s, empty_index, MAP_INSRT);
}
clht_snapshot_all_t s2 = snap_set_map_and_inc_version(sl, empty_index,
if (CAS_U64 (&bucket->snapshot, si1, s2) != s1)
{
goto retry;
}
return true;

Figure 7: Insert operation of CLHT-LF.

10

MAP_VALID) ;
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/* Remove a key-value entry from CLHT-LF. %/
clht_val_t
clht_remove (clht_t* h, clht_addr_t key)

{
clht_hashtable_t* hashtable = h->ht;
size_t bin = clht_hash(hashtable, key);
bucket_t* bucket = hashtable->table + bin;
clht_snapshot_t s;
int 1i;
retry:
s.snapshot = bucket->snapshot;
for (i = 0; i < KEY_BUCKT; i++)
{
if (bucket->key[i] == key && s.map[i] == MAP_VALID)
{
clht_val_t removed = bucket->vallil;
clht_snapshot_all_t sl = snap_set_map(s.snapshot, i, MAP_INVLD);
if (CAS_U64 (&bucket->snapshot, s.snapshot, sl1) == s.snapshot)
{
return removed;
}
else
{
goto retry;
}
}
}
return O;
}

Figure 8: Remove operation of CLHT-LF.

Remove operation. Figure [§] contains the code of the remove operation. The removal is much
simpler than the insert operation. The bucket is traversed and if the key is found in a valid state, the
value is kept (Line 18) and the thread tries to set the map[i] value to invalid (Lines 20-21). If the
latter operation fails, the removal is restarted (Line 27).

2.2.1 Correctness sketch

The map fields of a clht_snapshot_t object take three distinct values: MAP_VALID, MAP_INVLD, and
MAP_INSRT. The first represents a valid key/value pair, the second an invalid one, and the third one
that is currently being inserted and is thus still invalid.

As with CLHT-LB, the search in CLHT-LF takes a snapshot of key/value pairs, plus the value of
the map for this index. If the snapshot is taken (Line 14 of Figure @, then we know that the value
corresponds to the key and the map contains a valid flag for this pair. However, proving the correctness
of returning 0 in Line 18 if the snapshot fails is more complicated. We know that at the point where
the thread reads map[i] there is a valid key/value pair, otherwise the if statement of Line 8 would fail.
The same applies for Line 10: the key[i] is the key that the operation is looking for. Consequently,
we can recognize two reasons why the snapshot failed:

1. The valid value of map[i] corresponds to a different key. In this case, a concurrent removal has
to remove the key by setting map[i] to invalid and a subsequent, but still concurrent, insertion
must write the value of key that the search is looking for. Therefore, the insertion of key is
concurrent to the current search, hence the search can be linearized before the insertion.

2. The valid value of map[i] corresponds to the correct key. In this case, the snapshot can only
fail if there is again a concurrent removal with a subsequent insert (which changes the value).
Therefore, the removal of key is concurrent to the search, hence the search can be linearized
after the removal.

If an insertion finds the key in the bucket, then it returns (Lines 15-22 of Figure . This is trivially

11



correct, as it can be seen as a search operation that found the key. In addition, if the empty_index
is greater or equal to zero, the value of map[i] is reverted to MAP_INVLD. This change in map[i] does
not affect searches or removals, as, for those, MAP_INSRT is equivalent to MAP_INVLD.

Every retry of the operation starts by taking the current value of the clht_snapshot_t object in
order to ensure that we avoid “problematic concurrency”.

empty_index is a simple state diagram: if it is less than 0, then the current operation does not
hold any spot in the bucket for its insertion, otherwise, it holds the spot that corresponds to the value
of empty_index.

In the former case (Lines 24-40), the operation looks for an empty spot in Line 26 and if there is
not any (i.e., the bucket is full with valid and being inserted spots), the operation is restarted (Line
29). If a spot is found, the thread tries with a CAS to update the clht_snapshot_t object so that
it is visible to the other threads that an insertion is happening on this spot. If this CAS fails, the
operation is restarted, after the empty_index is set to negative to show that it has not acquired any
spots. This CAS might fail either because there was a change in the values of the map, or a version
change. The former might be a false conflict, but the latter is necessary so that we disallow concurrent
insertions of the same key on different spots of the same bucket. If the CAS succeeds, nobody can
change this spot, thus the thread can safely write the value and the key to be inserted.

If the empty_index is greater or equal to zero in Line 24, we know that a previous try has success-
fully performed the steps of Lines 25-39, thus we only need to update the clht_snapshot_t object so
that it gets then new version number and the new state of the other map fields.

Once the previous steps are completed, a new version of the clht_snapshot_t object is created
with (i) an incremented version number, and (ii) map [empty_index] set to valid. In other words, we
are trying to make the insertion visible to the other threads with a CAS in Line 47. Clearly, if there are
many concurrent insertions, only one can succeed, because of the version number that is incremented.
Accordingly, we avoid the case of concurrent insertions putting the same key in different spots of the
bucket.

Finally, the correctness of the remove operation is trivial. A removal can only succeed if there is
no completed concurrent insertion, otherwise the version number would have increased, making the
CAS (Line 21 of Figure |8) fail. Even without concurrent insertions, concurrent removals might cause
the current removal to restart. In any case, if the CAS fails, we ensure that the correct key/value pair
is removed.

2.2.2 Liveness

We can easily see that the search operation is wait-free, as it always executes a finite number of steps
since there is no way to be restarted. Updates are lock-free under certain assumptions: the number of
crashed processes that is supported depends on the longest possible bucket (i.e., how many keys fall
in the same bucket). A crashed process might render one of the spots of the bucket useless by leaving
the MAP_INSRT value before crashing.

A removal can be restarted by either a concurrent successful update (which is OK for lock-freedom),
or by an insertion preparing the insert (i.e., setting the value of a map entry to MAP_INSRT). However,
we can have a finite number of the latter restarts before an insert operation completes: in the extreme
case, all spots in the buckets will be set to MAP_INSRT. When this happens, the first insertion that will
do CAS to increment the version will be successful.

12
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update ()
{
retry:
parse(); /* keeps track of the version numbers x*/
if (!can_update()) /* ASCY3 x/
{
return false;
}
lock(); /* 1 node for insert, 2 for remove x*/
if (!validate_version())
{
goto retry;
}
apply_update () ;
increase_version();
unlock () ;

Figure 9: Steps of update operations in BST-TK.

3 BST-TK, Binary Search Tree Ticket

Existing lock-based binary search trees (BST) [3, [7] are (i) quite complex and (ii) acquire a large
number of locks, more than we could consider as minimum. Accordingly, these designs do not follow
the ASCY, pattern that suggests that the modification phase of an update (i.e., when the writes
happen) should be close to the one of any standard sequential implementation.

To address the lack of an “ASCY-compliant” lock-based BST, we develop BST-TK. Intuitively, on
any lock-based BST an update operation parses to the node to modify and, if possible, acquires a
number of locks and performs the update. This is precisely how BST-TK proceeds.

More specifically, BST-TK is an external tree, where every internal (router) node is protected by a
lock and contains a version number. The version numbers are used in order to be able to optimistically
parse the tree and later detect concurrency. Update operations proceed as described in Figure [9]

We are able to simplify the design of BST-TK by making the simple observation that a ticket lock
already contains a version field. Accordingly, we consolidate the version validation and increment,
with locking and unlocking, respectively.

We do this by modifying the interface of the ticket lock in order to try to acquire a specific version
of the lock (i.e., the one that the parsing phase has observed). If the lock acquisition fails, the version
of the lock has been incremented by a concurrent update, hence the operation has to be restarted.
We further optimize the tree by assigning two smaller (32-bits) ticket locks to each node, so that the
left and the right pointers of the tree can be locked separately. Overall, BST-TK acquires one lock for
successful insertions and two locks for successful removals.

Figure contains the modified interface of the ticket lock. tl_trylock_version tries to
acquire either the left or the right smaller ticket locks based on the given version (tl-old).
tl trylock version both tries to acquire both left and right locks at the same time (it is used
by the remove operation). Finally, t1_unlock and tl_revert increment and decrement the version
and the ticket values, respectively.

Accordingly, a BST-TK node is:

typedef struct node
{
skey_t key;
union
{
sval_t val;
volatile uint64_t leaf;
I8
volatile struct nodex*x left;
volatile struct node* right;
volatile tl_t 1lock;
} node_t;

13



1 typedef union t132

2 1

3 struct

4 {

5 volatile uintl1l6_t version;
6 volatile uintl16_t ticket;
7 I8

8 volatile uint32_t to_uint32;
9 } tl32_t;

10

11 typedef union tl

12 {

13 t132_t 1r[2];

14 uint64_t to_uint64;

15 } tl_t;

16

17 static inline int
18 tl_trylock_version(volatile tl_t* tl, volatile tl_t* tl_old, int right)
19 {

20 uint16_t version = tl_old->lr[right].version;

21 if (version != tl_old->lr[right].ticket)

22 {

23 return 0;

24 }

25

26 t132_t tlo = { .version = version, .ticket = version };

27 t132_t tln = { .version = version, .ticket = (version + 1) };
28 return CAS_U32(&tl->1r[right].to_uint32, tlo.to_uint32, tln.to_uint32) == tlo.to_uint32;
29 1}

30

31 #define TLN_REMOVED O0x0000FFFFOOOOFFFFOOOOLL

32

33 static inline int
34 tl_trylock_version_both(volatile tl_t* tl, volatile tl_t* tl_old)

35 {

36 uintl6_t vO = tl_old->1r[0].version;

37 uint16_t vl = tl_old->1r[1].version;

38 if (vO != tl_old->1r[0].ticket || vl != tl_old->1r[1].ticket)
39 {

40 return O0;

41 }

42

43 tl_t tlo = { .to_uint64 = tl_old->to_uint64 };

44 return CAS_U64 (&tl->to_uint64, tlo.to_uint64, TLN_REMOVED) == tlo.to_uint64;
45 }

46

47

48 static inline void
49 tl_unlock(volatile tl_t* tl, int right)

50 {

51 COMPILER_NO_REORDER (tl->1r[right].version++);
52}

53

54 static inline void
55 tl_revert(volatile tl_t* tl, int right)

56 {
57 COMPILER_NO_REORDER(tl->1lr[right].ticket--);
58 )

Figure 10: The modified interface of a ticket lock.
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sval_t
bst_tk_search(bst_tk_t* set, skey_t key)
{

node_t* curr = set->head;

while (!curr->leaf)

{
if (key < curr->key)
{
curr = (node_t*) curr->left;
}
else
{
curr = (node_t*) curr->right;
}
}
if (curr->key == key)
{
return curr->val;
}

return O;

}

Figure 11: Search operation of BST-TK.

Search operation. Figure [11] contains the code of the search operation. The code could very well
be the code for a standard sequential BST (ASCY; at its best). The operations traverses the tree
until it reaches a leaf node. If that node is the one that the operation is looking for, then the value is
returned.

Insert operation. Figure|12| contains the code of the insert operation. The parse phase (Lines 12-
30) is identical to the search operation, with the addition that it keeps track of the predecessor node
apart from the current one. Lines 32-35 implement the read-only unsuccessful insertions (ASCY3). If
the update is possible (Lines 36+ ), two new nodes are allocated, the one that holds the new key/value
pair and one router node. Then, one lock is acquired, protecting either the left or the right pointer of
the predecessor. If the locking succeeds, the operation proceeds, otherwise it is restarted.

Actually, some of these restarts can be avoided if we are willing to sacrifice complexity. In partic-
ular, if the version of the right or left pointer of the predecessor has changed due to an insertion, then
instead of restarting, we could perform block-waiting and the proceed with the operation by traversing
the new node(s).

15
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i

bst_tk_insert(intset_t* set,

{

nt

node_t* curr;
node_t* pred = NULL;
volatile uint64_t curr_ver =

0;
uint64_t pred_ver = 0, right =

0;

retry:
curr = set->head;
do
{
curr_ver = curr->lock.to_uinté64;
pred = curr;
pred_ver = curr_ver;

if (key < curr->key)
{
right =
curr =
}
else
{
right = 1;
(node_t *)

0;

(node_t*) curr->left;

curr =

}

curr->right;

}

while (! curr->leaf);

if (curr->key == key)
{
return O;

}

node_t* nn
node_t* nr =

new_node (key, val,
new_node_no_init ();

NULL ,

if ((!'tl_trylock_version (&pred->lock,
{
ssmem_free(alloc,
ssmem_free(alloc,
goto retry;
}

nn) ;
nr) ;

if (key < curr->key)
{
nr->key =
nr->left =
nr->right =

curr ->key;
nn;
curr;

else
{
nr->key =
nr->left =
nr->right =

}

key;
curr;
nn;

if (right)
{
pred->right = nr;

else

{
pred->left =

}

nr;

tl_unlock (&pred->lock, right);

return 1;

skey_t key,

sval_t val)

NULL, 0);

(volatile tl_t=*) &pred_ver,

Figure 12: Insert operation of BST-TK.
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Remove operation. Figure contains the code of the remove operation. Parsing for removals
(Lines 11-31) keeps track of both the predecessor (pred) and the predecessor of the predecessor (ppred),
because a removal affects both nodes. Lines 33-36 implement the read-only unsuccessful removals
(ASCY3). If the update is possible (Lines 37+ ), the appropriate, right or left, pointer of the ppred is
locked, as well as both pointers of the pred. A removal needs more locks than an insertion, because it
results in pred being completely removed from the tree. If both lock acquisitions are successful, then
the actual removal is performed, otherwise the operation has to be restarted.
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sval_t
bst_tk_remove (intset_t* set, skey_t key)
{

node_t* curr, * pred = NULL, * ppred =
volatile uint64_t curr_ver = 0;

NULL;

0O Utk WN -

uint64_t pred_ver = 0

retry:
curr = set->head;
do
{
curr_ver =
ppred = pred;
ppred_ver =
pright = right;
pred = curr;
pred_ver =

>

ppred_ver = 0,

curr->lock.to_uint64;

pred_ver;

curr_ver;

if (key < curr->key)

{
right = 0;
curr = (node_t*) curr->left;
}
else
{
right = 1;
curr = (node_t*) curr->right;
}
}
while (!'curr->leaf);
if (curr->key != key)
{
return O;
}
if ((!'tl_trylock_version(&ppred->lock,
{
goto retry;
}
if ((!'tl_trylock_version_both(&pred->lock,
{
tl_revert (&ppred->lock, pright);
goto retry;
}
if (pright)
{
if (right)
{
ppred->right = pred->left;
else
{
ppred->right = pred->right;
}
else
{
if (right)
{
ppred->left = pred->left;
else
{
ppred->left = pred->right;
}
}

tl_unlock (&ppred->lock,
curr) ;

ssmem_free(alloc,
return curr->val;

}

pright);

Figure 13: Remove operation of BST-TK.

ssmem_free(alloc,

=0,

(volatile tl_t*) &ppred_ver,

(volatile tl_t*) &pred_ver)))

pred);
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3.1 Correctness proof

We rewrite the code of of BST-TK in a formatting more suitable for proving correctness.

Interface Vlock {
> Lock one side of the ticket lock. It locks left/right lock when s is false/true.
bool LockOneSide(bool s, int ver);
> Lock both sides of the ticket lock. It locks left/right lock when s is false/true.
bool LockBothSide (int ver);
int GetVer () ;
void Release(bool side);

rg

type Node {
Node x*right;
Node x*left;
int key;
bool leaf;
Vlock lock;
g

Node *root;

INITO {
root = pointer to a new internal node with key —oo.
root — left = pointer to a new leaf node with key —oo.
root — right = pointer to a new leaf node with key +oo.
}

bool FIND(int k){

curr := root;

while curr points to an internal node {
if k <curr — key then curr:=curr — left;
else curr:= curr — right;

}

if curr — key =k then return true;

return false;

}

bool INSERT (int k){

retry:

curr := root;

while leurr — leaf {
predwer := curr — lock.GetVer();
pred := curr;
if key < curr — key then curr := curr — left;
else curr:= curr — right;

}

key := curr — key

if k=key then return false;

nn := pointer to a new leaf node with key k

nr := pointer to a new internal node with key min{key, k}

and child pointers curr and nr.

side := k > pred — key;

if pred — lock.LockOneSide(side, curr_ver) then goto retry;
> Change one child pointer of pred to nr.

do_insert (pred,nr) ;

pred — Release(side) ;

return true;

}
bool REMOVE (Key k){
retry:
pred := root;
curr := root — right;
while leurr — leaf {
currwer = curr — lock.GetVer();
ppred := pred;
ppred_ver := pred_ver;
pred := curr;
pred_ver := curr_ver;

if k < curr — key then curr:= curr — left;
else curr = curr — right;
}
if curr — key # k then return false;
pside := k> ppred — key ;
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if Ippred — lock.LockOneSide(pside, ppred_ver) then goto retry;
if Ipred — lock.LockBothSide(pred-ver) then {

ppred — releaselock () ;

goto retry;

> Change the pointer.
do_remove (ppred ,pred,k) ;
ppred — releaselock (pside) ;
return true;

}

void do_insert(Nodex p, Node* n){
> Precondition: n points to a leaf node.
> Precondition: p points to an internal node.
> Precondition: Node pointed by n is a successor of node pointed by p.
if p— key <n — key then
p—left := n;
else p—right := n;

void do_remove (Node *pp, Node *p, int k){
> Precondition: p and pp point to internal nodes.
> Precondition: Node pointed by p is a successor of node pointed by pp.
> Precondition: p has a leaf successor with key k.

if pp — key >k then {
if p — key >k then

pp — right := p —left;

else pp — right := p — right;
}
else {

if p — key > k then
pp — left := p—left;
else pp—left := p— right;

Listing 1: BST-TK rewritten for the correctness proof.
We have the following observations:

Lemma 1. The pointer root never changes. The key field of any node never changes. The leaf field
of any node never changes. Leaf nodes have no successors, Internal nodes always have two successors.

Lemma 2. Fach call to do_remove and do_insert function satisfies preconditions.

Proof. This can be easily deduced by the property of the ticket lock. For example, line 41 get the
version of the lock, so we can conclude if line 52 successfully grasp the lock, there must not be any other
thread modified the link from pred to nr. So if the locks are successfully grasped, the preconditions
are automatically satisfied. ]

We call a node is active after it is inserted to the data structure. Namely, after an insertion of line
54, the nodes pointed by nn and nr are inserted into the tree.

Lemma 3. Any removed internal node is both side locked by some REMOVE operation and never
released.

Proof. Assume u is a removed internal node. Consider the execution step which this node is removed
from the tree. It is easy to see the execution step must correspond to the execution of line 80. Because
in the execution of line 54, only one child pointer of the node pointed by pred changes from curr to
nr, but after the modification, the node pointed by curr is still on the subtree rooted at pred. So
no node would be removed from the tree. However, in the execution of line 80, if the node pointed
by ppred is not on the backbone, then the operation would obviously not remove any node from the
backbone. So we have the following observation: if a computation step removes a backbone internal
node, it is an computation step corresponding to line 80 and it removes the node pointed by pred. We
can see the node is locked on both sides and the lock would not be released any more. O

Lemma 4. If the left (or right) child field of any node u is modified by some thread T, the corresponding
lock w.lock.left (or u.lock.right) must have been acquired by the thread.
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Proof. 1t is easy to check before the execution of line 54 and line 80, the operation has to acquire the
lock successfully. O

Lemma 5. For an effectful INSERT operation, the last node pointed by pred locked by the operation
s an internal backbone node. After grasping the lock, pred node has a child leaf node pointer field
curr.

Proof. From the Lemma 2, removed nodes are locked by the operation which does the removal. So the
node pointed pred is on the backbone. The version number remained the same as the version number
when curr advances to the child pointer of pred. So the node which curr points to is a leaf node, it
is a child node of pred, after pred is locked. O

Lemma 6. For effectful REMOVE operations, after grasping the two locks successfully, the node
pointed by ppred is an internal backbone node with a child internal node pointed by pred. pred has a
child leaf node which is pointed by curr.

Proof. There is a state before acquisition of the locks such that pred is a child pointer of the node
pointed by ppred , curr is a child pointer of the node pointed by pred. The version numbers are read
before the pointer reference, so the success in lock acquisition implies that these links are not modified
since that time. Also, from lemma 2, a removed node is locked permanently. So the node pointed by
ppred is an internal backbone node after the lock acquisition. ]

Lemma 7. All the nodes reachable from root forms exactly an external binary search tree with BST
ordering: if u is a node on the tree, v and w are the left and right children of w, then we have
v.key < u.key < w.key.

Proof. We prove this lemma by induction. The lemma obviously hold after initialization. We assume
for a prefix of the execution «, the resulting configuration C' satisfies above assumption. We consider
the next computation step . We want to prove the new configuration C’ after the execution of x
satisfies also the assumptions. We only need to consider the execution of line 54 and line 80. It is easy
to verify execution of line 54 and line 80 preserves the tree invariant. Consider the execution of line
54. Since do_insert function satisfies its precondition, nr and nn points to two newly allocated nodes,
pred change one of its successor to nr. From the implementation of do_insert, it is obvious that the
tree invariant is preserved, because the node pointed by pred is on the tree from Lemma 4, then the
modification is simply to replace the subtree of nn by a new subtree containing 3 nodes.

The execution of line 80 is similar. In configuration C, the node u pointed by ppred is on the
backbone from Lemma 4, the nodes v,w pointed by pred and curr is the child and grandchild of
the node pointed by u. It is easy to verify after the pointer modification, the invariants are still
preserved. ]

If we view the computation of the algorithm as an sequence of program states g, y1, - ¥n , then
we can define the abstract state Abs(o) as the set of keys contained in all the leaf nodes reachable
from root in state o. Let O1,01,--- O be the subsequence of all effectful operations ordered by
their linearizability points, i.e., the do_insert and do_remove functions. Assume og, o1, -0} be the
subsequence of states just after the execution of the linearizability points of the operations, we have
the following lemma:

Lemma 8. If O; is an effectful INSERT (k) operation, then k ¢ Abs(ci—1), and k € Abs(o;). If O; is
an REMOVE(k) operation, then k € Abs(o;—1), and k ¢ Abs(o;).

Proof. Lemma 4 and the precondition of do_insert guarantee that the do_insert operation inserts a
new leaf node with key k to the tree at its linearizability point, other leaf nodes remains unchanged.
Lemma 5 and the precondition of do_remove imply that k € Abs(o;_1), and k ¢ Abs(o;), because a
BST cannot have two leaf nodes with the same key. O

Lemma 9. The BST-TK algorithm satisfies the assumption RUA.
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Proof. From Lemma 3, we know that it is obviously because all removed nodes are locked and never
released. From Lemma 4, any thread cannot change the successor of removed nodes. So the algorithm
satifies RUA. O

We add effectless operations to the argument. Effectless operations are linearized at non-fixed
points. First, notice that all operations need to traverse the tree first, the traversal may restart several
times. Assume the last traversal of an effectless operation visits nodes vy, v, - - - Up. v1 = T00t, U, 1S a
leaf node. We define the linearizability point of an effectless operation as the last state when v,,_1 is
not removed from the tree before curr goes through the pointer from v,_1 to v,. This linearizability
point is well defined, because of the Generalized Hindsight Lemma. Obviously, the temporal node
path vy, vs, - - - v, is a temporal backbone.

Lemma 10. Let O1,0 --- Oy be the subsequence of all effectful operations ordered by their lineariz-
ability points. O is an effectless operation which is linearized at state o between O;—1 and O; with the
linearizability point defined as above. Then : 1. If O is a FIND(k) operation, then O returns true if
and only k € Abs(o). 2. If O is an INSERT (k) operation, then k € Abs(c). 3. If O is a REMOVE(k)
operation, then k ¢ Abs(o).

Proof. The three cases are similar. They just claim that if a tree traversal looking for key k£ would
end up with a leaf node with key k if and only if £ € Abs(o). If the traversal ends up with a leaf
node v, with key k, at state o, v,_1 is a backbone node, v, is a child of v,_;. So k € Abs(o). If the
traversal ends up with a leaf node with k&’ ¢ k. Obviously, if we change the key of the leaf node from
k' to k, is also a valid BST, it satisfy all the constraints. So k ¢ Abs(o). O

Lemma 11. The algorithm is linearizable with the order defined by their linearizability points.

Proof. Combining Lemma 8 and Lemma 10, the linearization order is given by the linearizability
points. [

4 Conclusions

We presented a novel concurrent hash-table algorithm, namely CLHT, and a new lock-based binary
search tree, called BST-TK. Both designs are based on asynchronized concurrency and show how
with these four simple guidelines in mind we can design new, highly scalable concurrent search data
structures.
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