Robust Distributed Learning

Challenges of Data Heterogeneity and Privacy

Nirupam Gupta and Rafael Pinot Distributed Computing Laboratory

Content

- General Lower Bound under Heterogeneity
 - Implications in learning
 - Optimal robustness strategy
 - Applicability to robust state estimation
- Characterizing Heterogeneity for First-Order Methods
 - (*G*, *B*)-Gradient dissimilarity
 - Impact of condition number
- Differential Privacy in Distributed SGD
 - Distributed (ϵ, δ) -DP
 - Synthesis with robustness

Challenge of Data Heterogeneity

by WATERSON

Resilience Property

(f, ε) – Resilience

Despite f adversarial nodes, output an ε -suboptimal solution to ERM over the training samples of honest nodes.

$$\mathcal{L}_{H}\left(\widehat{\theta}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}_{H}(\theta) \leq \varepsilon$$

Resilience Property

(f, ε) – Resilience

Despite f adversarial nodes, output an ε -suboptimal solution to ERM over the training samples of honest nodes.

$$\mathscr{L}_{H}\left(\widehat{\theta}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathscr{L}_{H}(\theta) \leq \varepsilon$$

When the loss is defined by the indicator function, in the case of classification, ε is the <u>additional</u> fraction of <u>misclassified samples</u>

In general, local training samples of the nodes are different

$$\mathcal{L}_i \neq \mathcal{L}_j$$

In general, local training samples of the nodes are different $\mathcal{L}_i \neq \mathcal{L}_i$

It is impossible to achieve (f, ε) -Resilience, due to the anonymity of adversarial nodes

In general, local training samples of the nodes are different

$$\mathcal{L}_i \neq \mathcal{L}_j$$

"Approximate Fault-Tolerance in Distributed Optimization." S. Liu et al., PODC'21

It is impossible to achieve (f, ε) -Resilience, due to the anonymity of adversarial nodes

In general, local training samples of the nodes are different

$$\mathcal{L}_i \neq \mathcal{L}_j$$

"Approximate Fault-Tolerance in Distributed Optimization." S. Liu et al., PODC'21

It is impossible to achieve (f, ε) -Resilience, due to the anonymity of adversarial nodes

$$H o (n-f)$$
 nodes $H' o (n-2f)$ nodes $\mathcal{A} o f$ nodes $\mathcal{A} o f$ nodes $\theta_S^* := \arg\min \mathscr{L}_S(\theta)$

Scenario I

Scenario I

$$\hat{\theta} \in [\theta_H^* - \varepsilon, \, \theta_H^* + \varepsilon]$$

$$\hat{\theta} \in [\theta_H^* - \varepsilon, \, \theta_H^* + \varepsilon]$$

Set of honest nodes is *H*

$$\widehat{\theta} \in [\theta_H^* - \varepsilon, \, \theta_H^* + \varepsilon]$$

Scenario II

$$\widehat{\theta} \in [\theta_H^* - \varepsilon, \, \theta_H^* + \varepsilon]$$

Set of honest nodes is *H*

$$\widehat{\theta} \in [\theta_H^* - \varepsilon, \, \theta_H^* + \varepsilon]$$

Set of honest nodes is $H' \cup \mathscr{A}$

Set of honest nodes is *H*

$$\widehat{\theta} \in [\theta_H^* - \varepsilon, \, \theta_H^* + \varepsilon]$$

Set of honest nodes is $H' \cup \mathscr{A}$

$$\widehat{\theta} \in [\theta^*_{H' \cup \mathcal{A}} - \varepsilon, \, \theta^*_{H' \cup \mathcal{A}} + \varepsilon]$$

Set of honest nodes is *H*

$$\widehat{\theta} \in [\theta_H^* - \varepsilon, \, \theta_H^* + \varepsilon]$$

Set of honest nodes is $H' \cup \mathscr{A}$

$$\widehat{\theta} \in [\theta_{H' \cup \mathcal{A}}^* - \varepsilon, \, \theta_{H' \cup \mathcal{A}}^* + \varepsilon]$$

Which scenario is the correct one?

Set of honest nodes is *H*

$$\widehat{\theta} \in [\theta_H^* - \varepsilon, \, \theta_H^* + \varepsilon]$$

Set of honest nodes is $H' \cup \mathscr{A}$

$$\widehat{\theta} \in [\theta_{H' \cup \mathcal{A}}^* - \varepsilon, \, \theta_{H' \cup \mathcal{A}}^* + \varepsilon]$$

Which scenario is the correct one? We cannot know

Set of honest nodes is *H*

$$\widehat{\theta} \in [\theta_H^* - \varepsilon, \, \theta_H^* + \varepsilon]$$

Set of honest nodes is $H' \cup \mathscr{A}$

$$\widehat{\theta} \in [\theta_{H' \cup \mathcal{A}}^* - \varepsilon, \, \theta_{H' \cup \mathcal{A}}^* + \varepsilon]$$

Which scenario is the correct one? We cannot know

Satisfying (f, ε) -Resilience in Scenario I (or II) violates the condition in Scenario II (or I)

$$H \rightarrow (n - f)$$
 nodes $H' \rightarrow (n - 2f)$ nodes $\mathscr{A} \rightarrow f$ nodes

$$H \rightarrow (n - f)$$
 nodes $H' \rightarrow (n - 2f)$ nodes $\mathscr{A} \rightarrow f$ nodes

satisfies (f, ε) -Resilience in both scenarios

satisfies (f, ε) -Resilience in both scenarios

Bounded "Heterogeneity" is Critical to Robustness

Heterogeneity ≜ Variation Between Solutions

Heterogeneity ≜ Variation Between Solutions

 (f, ε) -Redundancy

Heterogeneity ≜ Variation Between Solutions

(f, ε) -Redundancy	

 (f, ε) -Redundancy

 (f, ε) -Redundancy

$$S \rightarrow n - f$$
 nodes

 (f, ε) -Redundancy

$$S \to n - f$$
 nodes $S' \subseteq S$ of $n - 2f$ nodes

 (f, ε) -Redundancy

$$S \to n-f$$
 nodes $S' \subseteq S$ of $n-2f$ nodes

$$\mathscr{L}_{S}\left(\theta_{S'}^{*}\right) - \min \mathscr{L}_{S} \leq \varepsilon$$

(f, ε) -Redundancy

$$S \to n-f$$
 nodes $S' \subseteq S$ of $n-2f$ nodes

$$\mathscr{L}_{S}\left(\theta_{S'}^{*}\right) - \min \mathscr{L}_{S} \leq \varepsilon$$

$$\theta_{S'}^* := \arg\min \mathscr{L}_{S'}(\theta)$$

(f, ε) -Redundancy

Ignoring f nodes leads to sub-optimality of value less than ε :

$$S \to n-f$$
 nodes $S' \subseteq S$ of $n-2f$ nodes

$$\mathscr{L}_{S}\left(\theta_{S'}^{*}\right) - \min \mathscr{L}_{S} \leq \varepsilon$$

$$\theta_{S'}^* := \arg\min \mathcal{L}_{S'}(\theta)$$

 (f, ε) -resilience \iff (f, ε) -redundancy

(f, ε) -Redundancy

Ignoring f nodes leads to sub-optimality of value less than ε :

$$S \to n-f$$
 nodes $S' \subseteq S$ of $n-2f$ nodes

$$\mathscr{L}_{S}\left(\theta_{S'}^{*}\right) - \min \mathscr{L}_{S} \leq \varepsilon$$

$$\theta_{S'}^* := \arg\min \mathscr{L}_{S'}(\theta)$$

 (f, ε) -resilience \iff (f, ε) -redundancy

Choose a set S such that |S| = n - f

Choose a set S such that |S| = n - f

For all $S' \subseteq S$ such that |S'| = n - 2f

Choose a set S such that |S| = n - f

For all $S' \subseteq S$ such that |S'| = n - 2f

Compute
$$\operatorname{error}(S, S') \triangleq \mathscr{L}_{S}\left(\theta_{S'}^{*}\right) - \min \mathscr{L}_{S}$$

Choose a set S such that |S| = n - f

For all $S' \subseteq S$ such that |S'| = n - 2f

Compute
$$\operatorname{error}(S, S') \triangleq \mathscr{L}_{S}\left(\theta_{S'}^{*}\right) - \min \mathscr{L}_{S}$$

Output $\arg\min \mathcal{L}_{S^*}(\theta)$ such that

$$S^* \in \arg\min_{S} \left\{ \max_{S' \subseteq S} \operatorname{error}(S, S') \right\}$$

Choose a set S such that |S| = n - f

For all $S' \subseteq S$ such that |S'| = n - 2f

Compute
$$\operatorname{error}(S, S') \triangleq \mathscr{L}_{S}\left(\theta_{S'}^{*}\right) - \min \mathscr{L}_{S}$$

Output $\arg\min \mathscr{L}_{\mathcal{S}^*}(\theta)$ such that

$$S^* \in \arg\min_{S} \left\{ \max_{S' \subseteq S} \operatorname{error}(S, S') \right\}$$

Choose a set S such that |S| = n - f

For all $S' \subseteq S$ such that |S'| = n - 2f

Compute
$$\operatorname{error}(S, S') \triangleq \mathscr{L}_{S}\left(\theta_{S'}^{*}\right) - \min \mathscr{L}_{S}$$

Output $\arg\min \mathscr{L}_{S^*}(\theta)$ such that

$$S^* \in \arg\min_{S} \left\{ \max_{S' \subseteq S} \operatorname{error}(S, S') \right\}$$

$$(f, \varepsilon)$$
-redundancy $\Longrightarrow (f, 2\varepsilon)$ -resilience

Consider y = Ax where $A \in \mathbb{R}^{n \times m}$, and observation $y \in \mathbb{R}^n$

Consider y = Ax where $A \in \mathbb{R}^{n \times m}$, and observation $y \in \mathbb{R}^n$

Suppose that up to f of the observations are arbitrarily corrupted

Consider y = Ax where $A \in \mathbb{R}^{n \times m}$, and observation $y \in \mathbb{R}^n$

Suppose that up to f of the observations are arbitrarily corrupted

We can recover x from $\tilde{y} \triangleq y + \delta$ where $||\delta||_0 \leq f$

Consider y = Ax where $A \in \mathbb{R}^{n \times m}$, and observation $y \in \mathbb{R}^n$

Suppose that up to f of the observations are arbitrarily corrupted

We can recover x from $\tilde{y} \triangleq y + \delta$ where $\|\delta\|_0 \leq f$

As long as rank $(A^S) = m$ where $S \subseteq [n]$ such that |S| = n - 2f

Consider y = Ax where $A \in \mathbb{R}^{n \times m}$, and observation $y \in \mathbb{R}^n$

Suppose that up to f of the observations are arbitrarily corrupted

We can recover x from $\tilde{y} \triangleq y + \delta$ where $\|\delta\|_0 \leq f$

Consider y = Ax where $A \in \mathbb{R}^{n \times m}$, and observation $y \in \mathbb{R}^n$

Suppose that up to f of the observations are arbitrarily corrupted

We can recover x from $\tilde{y} \triangleq y + \delta$ where $\|\delta\|_0 \leq f$

Consider y = Ax where $A \in \mathbb{R}^{n \times m}$, and observation $y \in \mathbb{R}^n$

Suppose that up to f of the observations are arbitrarily corrupted

We can recover x from $\tilde{y} \triangleq y + \delta$ where $\|\delta\|_0 \leq f$

Consider y = Ax where $A \in \mathbb{R}^{n \times m}$, and observation $y \in \mathbb{R}^n$

Suppose that up to f of the observations are arbitrarily corrupted

We can recover x from $\tilde{y} \triangleq y + \delta$ where $\|\delta\|_0 \leq f$

Consider y = Ax where $A \in \mathbb{R}^{n \times m}$, and observation $y \in \mathbb{R}^n$

Suppose that up to f of the observations are arbitrarily corrupted

We can recover x from $\tilde{y} \triangleq y + \delta$ where $\|\delta\|_0 \leq f$

Consider y = Ax where $A \in \mathbb{R}^{n \times m}$, and observation $y \in \mathbb{R}^n$

Suppose that up to f of the observations are arbitrarily corrupted

We can recover x from $\tilde{y} \triangleq y + \delta$ where $\|\delta\|_0 \leq f$

As long as rank $(A^S) = m$ where $S \subseteq [n]$ such that |S| = n - 2f

Consider y = Ax where $A \in \mathbb{R}^{n \times m}$, and observation $y \in \mathbb{R}^n$

Suppose that up to f of the observations are arbitrarily corrupted

We can recover x from $\tilde{y} \triangleq y + \delta$ where $\|\delta\|_0 \leq f$

As long as $\operatorname{rank}\left(A^{S}\right)=m$ where $S\subseteq\left[n\right]$ such that $\left|S\right|=n-2f$

"Fault-Tolerance in Distributed Optimization: The Case of Redundancy" Gupta and Vaidya, PODC'20

How about Gradient Descent

How to adapt functional redundancy for analyzing resilience of robust DGD

How to adapt functional redundancy for analyzing resilience of robust DGD

Local Phase: In each iteration t, each *honest* node i computes the local gradient:

How to adapt functional redundancy for analyzing resilience of robust DGD

Local Phase: In each iteration t, each *honest* node i computes the local gradient:

$$g_t^i := \nabla \mathcal{L}_i(\theta_t)$$

How to adapt functional redundancy for analyzing resilience of robust DGD

Local Phase: In each iteration t, each honest node i computes the local gradient:

$$g_t^i := \nabla \mathcal{L}_i(\theta_t)$$

Global Phase: Receiving gradients $g_t^1, ..., g_t^n$ the server "robustly" aggregates them, i.e., compute

How to adapt functional redundancy for analyzing resilience of robust DGD

Local Phase: In each iteration t, each honest node i computes the local gradient:

$$g_t^i := \nabla \mathcal{L}_i(\theta_t)$$

Global Phase: Receiving gradients $g_t^1, ..., g_t^n$ the server "robustly" aggregates them, i.e., compute

$$\widehat{g}_t := F\left(g_t^1, ..., g_t^n\right) ,$$

How to adapt functional redundancy for analyzing resilience of robust DGD

Local Phase: In each iteration t, each honest node i computes the local gradient:

$$g_t^i := \nabla \mathcal{L}_i(\theta_t)$$

Global Phase: Receiving gradients $g_t^1, ..., g_t^n$ the server "robustly" aggregates them, i.e., compute

$$\widehat{g}_t := F\left(g_t^1, ..., g_t^n\right) ,$$

And updates the current parameters: $\theta_{t+1} = \theta_t - \gamma_t \ \hat{g}_t$

Bounded Gradient Dissimilarity

Bounded Gradient Dissimilarity

L-smooth local losses, i.e., $\|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}_i(\theta')\| \le L\|\theta - \theta'\|$

 μ -PL (Polyak-Lojasiewicz) average loss function, i.e., $\|\nabla \mathscr{L}_H(\theta)\|^2 \ge 2\mu \left(\mathscr{L}_H(\theta) - \min \mathscr{L}_H\right)$

 $(2f, \varepsilon)$ -redundancy replaced by bounded gradient dissimilarity:

L-smooth local losses, i.e., $\|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}_i(\theta')\| \le L\|\theta - \theta'\|$

 μ -PL (Polyak-Lojasiewicz) average loss function, i.e., $\|\nabla \mathscr{L}_H(\theta)\|^2 \ge 2\mu \left(\mathscr{L}_H(\theta) - \min \mathscr{L}_H\right)$

$$\frac{1}{|H|} \sum_{i \in H} \|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}_H(\theta)\|^2 \le G^2 + B^2 \|\nabla \mathcal{L}_H(\theta)\|^2$$

L-smooth local losses, i.e., $\|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}_i(\theta')\| \le L\|\theta - \theta'\|$

 μ -PL (Polyak-Lojasiewicz) average loss function, i.e., $\|\nabla \mathscr{L}_H(\theta)\|^2 \ge 2\mu \left(\mathscr{L}_H(\theta) - \min \mathscr{L}_H\right)$

$$\frac{1}{|H|} \sum_{i \in H} \|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}_H(\theta)\|^2 \le G^2 + B^2 \|\nabla \mathcal{L}_H(\theta)\|^2$$

$$G^{2} = \frac{2L}{|H|} \sum_{i \in H} \left(\mathscr{Z}_{i}(\theta^{*}) - \min \mathscr{Z}_{i} \right)$$

L-smooth local losses, i.e., $\|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}_i(\theta')\| \le L\|\theta - \theta'\|$

 μ -PL (Polyak-Lojasiewicz) average loss function, i.e., $\|\nabla \mathscr{L}_H(\theta)\|^2 \ge 2\mu \left(\mathscr{L}_H(\theta) - \min \mathscr{L}_H\right)$

$$\frac{1}{|H|} \sum_{i \in H} \|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}_H(\theta)\|^2 \le G^2 + B^2 \|\nabla \mathcal{L}_H(\theta)\|^2$$

$$G^{2} = \frac{2L}{|H|} \sum_{i \in H} \left(\mathcal{Z}_{i}(\theta^{*}) - \min \mathcal{Z}_{i} \right) \qquad B^{2} = 2K_{\mathcal{Z}} - 1 \; ; \; K_{\mathcal{Z}} := \frac{L}{\mu}$$

L-smooth local losses, i.e., $\|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}_i(\theta')\| \leq L\|\theta - \theta'\|$

 μ -PL (Polyak-Lojasiewicz) average loss function, i.e., $\|\nabla \mathscr{L}_H(\theta)\|^2 \geq 2\mu \left(\mathscr{L}_H(\theta) - \min \mathscr{L}_H\right)$

$$\frac{1}{|H|} \sum_{i \in H} \|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}_H(\theta)\|^2 \le G^2 + B^2 \|\nabla \mathcal{L}_H(\theta)\|^2$$

$$G^{2} = \frac{2L}{|H|} \sum_{i \in H} \left(\mathcal{L}_{i}(\theta^{*}) - \min \mathcal{L}_{i} \right) \qquad B^{2} = 2K_{\mathcal{L}} - 1 \; ; \; K_{\mathcal{L}} := \frac{L}{\mu}$$

$$\theta^* := \arg\min \mathcal{L}_H(\theta)$$

L-smooth local losses, i.e., $\|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}_i(\theta')\| \leq L\|\theta - \theta'\|$

 μ -PL (Polyak-Lojasiewicz) average loss function, i.e., $\|\nabla \mathscr{L}_H(\theta)\|^2 \geq 2\mu \left(\mathscr{L}_H(\theta) - \min \mathscr{L}_H\right)$

$$\frac{1}{|H|} \sum_{i \in H} \|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}_H(\theta)\|^2 \le G^2 + B^2 \|\nabla \mathcal{L}_H(\theta)\|^2$$

$$G^{2} = \frac{2L}{|H|} \sum_{i \in H} \left(\mathcal{L}_{i}(\theta^{*}) - \min \mathcal{L}_{i} \right) \qquad B^{2} = 2K_{\mathcal{L}} - 1 \; ; \; K_{\mathcal{L}} := \frac{L}{\mu}$$

$$\theta^{*} := \arg \min \mathcal{L}_{H}(\theta)$$

L-smooth local losses, i.e., $\|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}_i(\theta')\| \le L\|\theta - \theta'\|$

 μ -PL (Polyak-Lojasiewicz) average loss function, i.e., $\|\nabla \mathscr{L}_H(\theta)\|^2 \geq 2\mu \left(\mathscr{L}_H(\theta) - \min \mathscr{L}_H\right)$

$$\frac{1}{|H|} \sum_{i \in H} \|\nabla \mathcal{L}_i(\theta) - \nabla \mathcal{L}_H(\theta)\|^2 \le G^2 + B^2 \|\nabla \mathcal{L}_H(\theta)\|^2$$

$$G^2 = \frac{2L}{|H|} \sum_{i \in H} \left(\mathscr{L}_i(\theta^*) - \min \mathscr{L}_i \right) \qquad B^2 = 2K_{\mathscr{L}} - 1 \; ; \; K_{\mathscr{L}} := \frac{L}{\mu}$$

$$\theta^* := \arg \min \mathscr{L}_H(\theta) \qquad \qquad \text{Condition number}$$

Suppose that aggregation F is (f, κ) -robust averaging

Suppose that aggregation F is (f, κ) -robust averaging

$$||F(g_t^1, ..., g_t^n) - g_t^H||^2 \le \kappa \frac{1}{|H|} \sum_{i \in H} ||g_t^i - g_t^H||^2$$

Suppose that aggregation F is (f, κ) -robust averaging

$$||F(g_t^1, ..., g_t^n) - g_t^H||^2 \le \kappa \frac{1}{|H|} \sum_{i \in H} ||g_t^i - g_t^H||^2$$

Suppose that aggregation F is (f, κ) -robust averaging

$$||F(g_t^1, ..., g_t^n) - g_t^H||^2 \le \kappa \frac{1}{|H|} \sum_{i \in H} ||g_t^i - g_t^H||^2$$

$$\varepsilon \in \mathcal{O}\left(\frac{\kappa G^2}{1 - \kappa B^2} + \exp\left(-\frac{\left(1 - \kappa B^2\right)}{K_{\mathcal{L}}}T\right)\right)$$

Suppose that aggregation F is (f, κ) -robust averaging

$$||F(g_t^1, ..., g_t^n) - g_t^H||^2 \le \kappa \frac{1}{|H|} \sum_{i \in H} ||g_t^i - g_t^H||^2$$

$$\varepsilon \in \mathcal{O}\left(\frac{\kappa G^2}{1 - \kappa B^2} + \exp\left(\frac{(1 - \kappa B^2)}{K_{\mathcal{L}}}T\right)\right)$$

Suppose that aggregation F is (f, κ) -robust averaging

$$||F(g_t^1, ..., g_t^n) - g_t^H||^2 \le \kappa \frac{1}{|H|} \sum_{i \in H} ||g_t^i - g_t^H||^2$$

$$\varepsilon \in \mathcal{O}\left(\frac{\kappa G^2}{1 - \kappa B^2} + \exp\left(\frac{(1 - \kappa B^2)}{K_{\mathcal{L}}}T\right)\right)$$

Suppose that aggregation F is (f, κ) -robust averaging

$$||F(g_t^1, ..., g_t^n) - g_t^H||^2 \le \kappa \frac{1}{|H|} \sum_{i \in H} ||g_t^i - g_t^H||^2$$

Robust DGD is (f, ε) -resilient with

$$\varepsilon \in \mathcal{O}\left(\frac{\kappa G^2}{1 - \kappa B^2} + \exp\left(\frac{(1 - \kappa B^2)}{K_{\mathcal{L}}}T\right)\right)$$

Limits the robustness parameter f

Suppose that aggregation F is (f, κ) -robust averaging

$$||F(g_t^1, ..., g_t^n) - g_t^H||^2 \le \kappa \frac{1}{|H|} \sum_{i \in H} ||g_t^i - g_t^H||^2$$

Robust DGD is (f, ε) -resilient with

$$\varepsilon \in \mathcal{O}\left(\frac{\kappa G^2}{1 - \kappa B^2} + \exp\left(\frac{(1 - \kappa B^2)}{K_{\mathcal{L}}}T\right)\right)$$

Provided that $\kappa B^2 < 1$

Limits the robustness parameter f

Suppose that aggregation F is (f, κ) -robust averaging

$$||F(g_t^1, ..., g_t^n) - g_t^H||^2 \le \kappa \frac{1}{|H|} \sum_{i \in H} ||g_t^i - g_t^H||^2$$

Robust DGD is (f, ε) -resilient with

$$\varepsilon \in \mathcal{O}\left(\frac{\kappa G^2}{1 - \kappa B^2} + \exp\left(\frac{(1 - \kappa B^2)}{K_{\mathcal{L}}}T\right)\right)$$

Provided that $\kappa B^2 < 1$

Limits the robustness parameter f

Assuming (G,B)-gradient dissimilarity, it is generally impossible to tolerate f adversarial nodes if $\frac{f}{n} \geq \frac{1}{2+B^2}$

Assuming (G,B)-gradient dissimilarity, it is generally impossible to tolerate f adversarial nodes if $\frac{f}{n} \geq \frac{1}{2+B^2}$

"Robust Distributed Learning: Tight Error Bounds and Breakdown Point under Data Heterogeneity." Y. Allouah at al. NeurIPS'23 [Spotlight]

Assuming (G,B)-gradient dissimilarity, it is generally impossible to tolerate f adversarial nodes if $\frac{f}{n} \geq \frac{1}{2+B^2}$

"Robust Distributed Learning: Tight Error Bounds and Breakdown Point under Data Heterogeneity." Y. Allouah at al. NeurIPS'23 [Spotlight]

Under *homogeneity* we can tolerate up to $\frac{n}{2}$ adversarial nodes

Assuming (G,B)-gradient dissimilarity, it is generally impossible to tolerate f adversarial nodes if $\frac{f}{n} \geq \frac{1}{2+B^2}$

"Robust Distributed Learning: Tight Error Bounds and Breakdown Point under Data Heterogeneity." Y. Allouah at al. NeurIPS'23 [Spotlight]

Under *homogeneity* we can tolerate up to $\frac{n}{2}$ adversarial nodes

Recall that
$$B^2 = 2K_{\mathcal{L}} - 1$$

Assuming (G,B)-gradient dissimilarity, it is generally impossible to tolerate f adversarial nodes if $\frac{f}{n} \geq \frac{1}{2+B^2}$

"Robust Distributed Learning: Tight Error Bounds and Breakdown Point under Data Heterogeneity." Y. Allouah at al. NeurIPS'23 [Spotlight]

Under *homogeneity* we can tolerate up to $\frac{n}{2}$ adversarial nodes

Recall that
$$B^2 = 2K_{\mathcal{L}} - 1$$

We cannot tolerate
$$\frac{f}{n} \geq \frac{1}{1+2K_{\mathcal{L}}}$$
 , where recall that $K_{\mathcal{L}} \geq 1$

$$\varepsilon < \frac{1}{8\mu} \left(\frac{f}{n - (2 + B^2) f} G^2 \right)$$

$$\varepsilon < \frac{1}{8\mu} \left(\frac{f}{n - (2 + B^2)f} G^2 \right)$$

Recall that
$$G^2 = \frac{2L}{|H|} \sum_{i \in H} \left(\mathscr{L}_i(\theta^*) - \min \mathscr{L}_i \right)$$

$$\varepsilon < \frac{1}{8\mu} \left(\frac{f}{n - (2 + B^2)f} G^2 \right)$$

Recall that
$$G^2 = \frac{2L}{|H|} \sum_{i \in H} \left(\mathscr{L}_i(\theta^*) - \min \mathscr{L}_i \right)$$

$$\varepsilon \in \Omega\left(\frac{f}{n} K_{\mathcal{L}}\right)$$

$$\varepsilon < \frac{1}{8\mu} \left(\frac{f}{n - (2 + B^2)f} G^2 \right)$$

Recall that
$$G^2 = \frac{2L}{|H|} \sum_{i \in H} \left(\mathscr{L}_i(\theta^*) - \min \mathscr{L}_i \right)$$

$$\varepsilon \in \Omega\left(\frac{f}{n} K_{\mathcal{L}}\right)$$

In general, (f, κ) -robust averaging is impossible for $\kappa < \frac{f}{n-2f}$

In general, (f, κ) -robust averaging is impossible for $\kappa < \frac{f}{n-2f}$

Coordinate-wise Trimmed Mean (CWTM) matches this bound, up to a *small* constant factor

In general, (f, κ) -robust averaging is impossible for $\kappa < \frac{f}{n-2f}$

Coordinate-wise Trimmed Mean (CWTM) matches this bound, up to a *small* constant factor

When
$$\kappa \le c \ \frac{f}{n-2f}$$
 we have $\varepsilon \in \mathcal{O}\left(\frac{f}{n-(2+B^2)f} \ G^2 + e^{-\frac{T}{K_{\mathcal{D}}}}\right)$

Nearest Neighbor Mixing: Order-Optimal Robustness

We can have efficient rules that are order optimal, i.e., $\kappa \in \mathcal{O}\left(\frac{f}{n}\right)$

Nearest Neighbor Mixing: Order-Optimal Robustness

We can have efficient rules that are order optimal, i.e., $\kappa \in \mathcal{O}\left(\frac{f}{n}\right)$

NNM is a *pre-aggregation scheme* that imparts order-optimal robustness to many robust aggregation rules

Nearest Neighbor Mixing: Order-Optimal Robustness

We can have efficient rules that are order optimal, i.e., $\kappa \in \mathcal{O}\left(\frac{f}{n}\right)$

NNM is a *pre-aggregation scheme* that imparts order-optimal robustness to many robust aggregation rules

If F is (f, κ) -robust averaging with $\kappa \in \mathcal{O}(1)$ then $F \cdot \text{NNM}$ is (f, κ) -robust averaging with $\kappa \in \mathcal{O}\left(\frac{f}{n}\right)$

Nearest Neighbor Mixing: Order-Optimal Robustness

We can have efficient rules that are order optimal, i.e., $\kappa \in \mathcal{O}\left(\frac{f}{n}\right)$

NNM is a *pre-aggregation scheme* that imparts order-optimal robustness to many robust aggregation rules

If F is (f, κ) -robust averaging with $\kappa \in \mathcal{O}(1)$ then $F \cdot \text{NNM}$ is (f, κ) -robust averaging with $\kappa \in \mathcal{O}\left(\frac{f}{n}\right)$

For each input vector v_i determine n-f nearest neighbors in the set of input vectors $\{v_1, \ldots, v_n\}$

For each input vector v_i determine n-f nearest neighbors in the set of input vectors $\{v_1, \ldots, v_n\}$

Let N_i be the set of n-f vectors nearest to v_i

For each input vector v_i determine n-f nearest neighbors in the set of input vectors $\{v_1, \ldots, v_n\}$

Let N_i be the set of n-f vectors nearest to v_i

$$\operatorname{Map} v_i \operatorname{to} z_i := \frac{1}{n - f} \sum_{v \in N_i} v$$

For each input vector v_i determine n-f nearest neighbors in the set of input vectors $\{v_1, \ldots, v_n\}$

Let N_i be the set of n-f vectors nearest to v_i

Map
$$v_i$$
 to $z_i := \frac{1}{n-f} \sum_{v \in N_i} v$

Define
$$F \cdot NNM(v_1, ..., v_n) = F(z_1, ..., z_n)$$

Intuition on Why NNM Works

Intuition on Why NNM Works

Variance of z_i 's is less than v_i 's by factor $\mathcal{O}\left(\frac{f}{n}\right)$

Intuition on Why NNM Works

Variance of z_i 's is less than v_i 's by factor $\mathcal{O}\left(\frac{f}{n}\right)$

Empirical Observations

Agg. Rule	ALIE	FOE	SF	Worst-Case
GeoMed	92.01 ± 04.35	65.61 ± 12.17	57.86 ± 10.42	57.86 ± 10.42
+ NNM	81.26 ± 08.91	75.27 ± 02.69	86.32 ± 03.77	75.27 ± 02.69
+ Bucketing	39.83 ± 11.35	44.73 ± 16.47	91.30 ± 03.91	44.73 ± 16.47

Agg. Rule	ALIE	FOE	SF	Worst-Case
CWTM	76.16 ± 07.68	69.96 ± 16.57	27.45 ± 08.83	27.45 ± 08.83
+ NNM	79.04 ± 09.19	79.91 ± 03.94	84.78 ± 05.78	79.04 ± 09.19
+ Bucketing	55.86 ± 10.00	42.80 ± 21.25	50.96 ± 16.53	42.80 ± 21.25

CNN trained on MNIST dataset, distributed among 13 honest nodes with Dirichlet parameter of 0.1 (extreme heterogeneity). There are 4 additional adversarial nodes executing attacks: ALIE, FOE and SF. We run 800 iterations, with local batch-size of 25.

Challenge of Privacy

PA MATTERSON

Local Phase: In each iteration t, each honest node i computes the local gradient:

Local Phase: In each iteration t, each *honest* node i computes the local gradient:

$$g_t^i := \frac{1}{b} \sum_{z \in S_t^{(i)}} \text{Clip} \left(\nabla_{\theta} \mathcal{E}(\theta_t, z) , C \right) + \eta_t$$

Local Phase: In each iteration t, each honest node i computes the local gradient:

$$g_t^i := \frac{1}{b} \sum_{z \in S_t^{(i)}} \text{Clip} \left(\nabla_{\theta} \mathcal{E}(\theta_t, z) , C \right) + \eta_t$$

with $\eta_t \sim \mathcal{N}\left(0, \, \sigma_{\mathrm{DP}}^2 \, I_d\right)$, where $\mathrm{Clip}(v, \, C) = \min\left\{1, \, \frac{C}{\|v\|}\right\} \, v$

Local Phase: In each iteration t, each honest node i computes the local gradient:

$$g_t^i := \frac{1}{b} \sum_{z \in S_t^{(i)}} \text{Clip} \left(\nabla_{\theta} \mathcal{E}(\theta_t, z) , C \right) + \eta_t$$

with $\eta_t \sim \mathcal{N}\left(0, \ \sigma_{\mathrm{DP}}^2 \ I_d\right)$, where $\mathrm{Clip}(v, \ C) = \min\left\{1, \frac{C}{\|v\|}\right\} \ v$

Global Phase: Receiving gradients $g_t^1, ..., g_t^n$ the server "robustly" aggregates them, i.e., compute

Local Phase: In each iteration t, each honest node i computes the local gradient:

$$g_t^i := \frac{1}{b} \sum_{z \in S_t^{(i)}} \text{Clip} \left(\nabla_{\theta} \mathcal{E}(\theta_t, z) , C \right) + \eta_t$$

with $\eta_t \sim \mathcal{N}\left(0, \, \sigma_{\mathrm{DP}}^2 \, I_d\right)$, where $\mathrm{Clip}(v, \, C) = \min\left\{1, \, \frac{C}{\|v\|}\right\} \, v$

Global Phase: Receiving gradients $g_t^1, ..., g_t^n$ the server "robustly" aggregates them, i.e., compute

$$\widehat{g}_t := F\left(g_t^1, ..., g_t^n\right) ,$$

Local Phase: In each iteration t, each honest node i computes the local gradient:

$$g_t^i := \frac{1}{b} \sum_{z \in S_t^{(i)}} \text{Clip} \left(\nabla_{\theta} \mathcal{E}(\theta_t, z) , C \right) + \eta_t$$

with $\eta_t \sim \mathcal{N}\left(0, \, \sigma_{\mathrm{DP}}^2 \, I_d\right)$, where $\mathrm{Clip}(v, \, C) = \min\left\{1, \, \frac{C}{\|v\|}\right\} \, v$

Global Phase: Receiving gradients $g_t^1, ..., g_t^n$ the server "robustly" aggregates them, i.e., compute

$$\widehat{g}_t := F\left(g_t^1, ..., g_t^n\right) ,$$

And updates the current parameters: $\theta_{t+1} = \theta_t - \gamma_t \ \hat{g}_t$

 (ϵ, δ) -Distributed DP

 (ϵ, δ) -Distributed DP

"Is Interaction Necessary Distributed Private Learning?" A. Smith et al. IEEE S&P 2017.

 (ϵ, δ) -Distributed DP

The transcript of communication between each node i and the server is (ϵ, δ) -DP w.r.t. the data held by node i

"Is Interaction Necessary Distributed Private Learning?" A. Smith et al. IEEE S&P 2017.

(ϵ, δ) -Distributed DP

The transcript of communication between each node i and the server is (ϵ, δ) -DP w.r.t. the data held by node i

"Is Interaction Necessary Distributed Private Learning?" A. Smith et al. IEEE S&P 2017.

A randomized algorithm $\mathscr{A}: \mathscr{X}^m \to \mathscr{Y}$ is (ε, δ) -DP if for any adjacent datasets $D, D' \in \mathscr{X}^m$ and any subset $S \subseteq \mathscr{Y}$,

(ϵ, δ) -Distributed DP

The transcript of communication between each node i and the server is (ϵ, δ) -DP w.r.t. the data held by node i

"Is Interaction Necessary Distributed Private Learning?" A. Smith et al. IEEE S&P 2017.

A randomized algorithm $\mathscr{A}: \mathscr{X}^m \to \mathscr{Y}$ is (ϵ, δ) -DP if for any adjacent datasets $D, D' \in \mathscr{X}^m$ and any subset $S \subseteq \mathscr{Y}$, $\Pr\left(\mathscr{A}(D) \in S\right) \leq e^{\epsilon} \Pr\left(\mathscr{A}(D') \in S\right) + \delta$

(ϵ, δ) -Distributed DP

The transcript of communication between each node i and the server is (ϵ, δ) -DP w.r.t. the data held by node i

"Is Interaction Necessary Distributed Private Learning?" A. Smith et al. IEEE S&P 2017.

A randomized algorithm $\mathscr{A}: \mathscr{X}^m \to \mathscr{Y}$ is (ε, δ) -DP if for any adjacent datasets $D, D' \in \mathscr{X}^m$ and any subset $S \subseteq \mathscr{Y}$,

$$\Pr\left(\mathcal{A}(D) \in S\right) \le e^{\epsilon} \Pr\left(\mathcal{A}(D') \in S\right) + \delta$$

"Our Data, Ourselves: Privacy via Distributed Noise Generation" C. Dwork et al. Eurocrypt 2006.

Consider T iterations of DP-DMGD

Consider *T* iterations of DP-DMGD

By RDP composition and subsampling amplification theorems, we get

Consider T iterations of DP-DMGD

By RDP composition and subsampling amplification theorems, we get "Rényi Differential Privacy." *Mironov, Ilya.* IEEE CSF,2017.

Consider T iterations of DP-DMGD

By RDP composition and subsampling amplification theorems, we get "Rényi Differential Privacy." *Mironov, Ilya.* IEEE CSF,2017.

Suppose $\epsilon \leq \log(1/\delta)$. There exists k > 0 such that, for sufficiently

small batch-size
$$b$$
, if $\sigma_{\mathrm{DP}} \geq k \, \frac{2C}{b} \, \mathrm{max} \, \left\{ \, 1 \, , \, \frac{b \sqrt{T \log(1/\delta)}}{m \, \epsilon} \, \right\}$

then DP-DMGD satisfies (ϵ, δ) -Distributed DP

Consider T iterations of DP-DMGD

By RDP composition and subsampling amplification theorems, we get "Rényi Differential Privacy." *Mironov, Ilya.* IEEE CSF,2017.

Suppose $\epsilon \leq \log(1/\delta)$. There exists k > 0 such that, for sufficiently

small batch-size
$$b$$
, if $\sigma_{\mathrm{DP}} \geq k \, \frac{2C}{b} \, \mathrm{max} \, \left\{ \, 1 \, , \, \frac{b \sqrt{T \log(1/\delta)}}{m \, \epsilon} \, \right\}$

then DP-DMGD satisfies (ϵ, δ) -Distributed DP

Suppose we provide (ϵ, δ) -distributed DP

Suppose we provide (ϵ, δ) -distributed DP

$$\mathscr{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathscr{L}\left(\theta\right) \in \mathscr{O}\left(K_{\mathscr{L}} \frac{d\sigma_{\mathrm{DP}}^{2}}{T}\right)$$

Suppose we provide (ϵ, δ) -distributed DP

$$\mathscr{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathscr{L}\left(\theta\right) \in \mathscr{O}\left(K_{\mathscr{L}} \frac{d\sigma_{\mathrm{DP}}^{2}}{T}\right)$$

Assuming NO clipping

Suppose we provide (ϵ, δ) -distributed DP

$$\mathscr{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathscr{L}\left(\theta\right) \in \mathscr{O}\left(K_{\mathscr{L}} \frac{d\sigma_{\mathrm{DP}}^{2}}{T}\right)$$

Assuming NO clipping

Substituting
$$\sigma_{\rm DP} = k \, \frac{2C}{b} \, {\rm max} \, \left\{ 1 \, , \, \frac{b\sqrt{T \log(1/\delta)}}{m \, \epsilon} \right\}$$

Training Error by DP-DMGD

Suppose we provide (ϵ, δ) -distributed DP

$$\mathscr{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathscr{L}\left(\theta\right) \in \mathscr{O}\left(K_{\mathscr{L}} \frac{d\sigma_{\mathrm{DP}}^{2}}{T}\right)$$

Assuming NO clipping

Substituting
$$\sigma_{\rm DP} = k \, \frac{2C}{b} \, {\rm max} \, \left\{ 1 \, , \, \frac{b\sqrt{T \log(1/\delta)}}{m \, \epsilon} \right\}$$

$$\mathscr{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathscr{L}\left(\theta\right) \in \mathscr{O}\left(K_{\mathscr{L}} \frac{d \log(1/\delta)}{m^{2} \epsilon^{2}}\right)$$

Training Error by DP-DMGD

Suppose we provide (ϵ, δ) -distributed DP

$$\mathcal{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right) \in \mathcal{O}\left(K_{\mathcal{L}} \frac{d\sigma_{\mathrm{DP}}^{2}}{T}\right)$$

Assuming NO clipping

Substituting
$$\sigma_{\rm DP} = k \, \frac{2C}{b} \, {\rm max} \, \left\{ 1 \, , \, \frac{b\sqrt{T \log(1/\delta)}}{m \, \epsilon} \right\}$$

$$\mathcal{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right) \in \mathcal{O}\left(K_{\mathcal{L}} \frac{d \log(1/\delta)}{m^{2} \epsilon^{2}}\right)$$

"On the Privacy-Robustness-Utility Trilemma in Distributed Learning." Allouah, Youssef et al. ICML, 2023.

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

$$||F(g_t^1, ..., g_t^n) - g_t^S||^2 \le \kappa \frac{1}{|S|} \sum_{i \in S} ||g_t^i - g_t^S||^2$$

Suppose that aggregation F is (f, κ) -robust averaging,

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

$$||F(g_t^1, ..., g_t^n) - g_t^S||^2 \le \kappa \frac{1}{|S|} \sum_{i \in S} ||g_t^i - g_t^S||^2$$

Suppose that aggregation F is (f, κ) -robust averaging,

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

$$||F(g_t^1, ..., g_t^n) - g_t^S||^2 \le \kappa \frac{1}{|S|} \sum_{i \in S} ||g_t^i - g_t^S||^2$$

$$\mathcal{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right) \in \mathcal{O}\left(K_{\mathcal{L}} \frac{d \log(1/\delta)}{nm^{2}\epsilon^{2}} + \kappa T \frac{d \log(1/\delta)}{m^{2}\epsilon^{2}} + \frac{\kappa G^{2}}{1 - \kappa B^{2}}\right)$$

Suppose that aggregation F is (f, κ) -robust averaging,

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

$$||F(g_t^1, ..., g_t^n) - g_t^S||^2 \le \kappa \frac{1}{|S|} \sum_{i \in S} ||g_t^i - g_t^S||^2$$

$$\mathcal{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right) \in \mathcal{O}\left(K_{\mathcal{L}} \frac{d \log(1/\delta)}{nm^{2}\epsilon^{2}} + \kappa T \frac{d \log(1/\delta)}{m^{2}\epsilon^{2}} + \frac{\kappa G^{2}}{1 - \kappa B^{2}}\right)$$

Suppose that aggregation F is (f, κ) -robust averaging,

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

$$||F(g_t^1, ..., g_t^n) - g_t^S||^2 \le \kappa \frac{1}{|S|} \sum_{i \in S} ||g_t^i - g_t^S||^2$$

$$\mathcal{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right) \in \mathcal{O}\left(K_{\mathcal{L}} \frac{d \log(1/\delta)}{nm^{2}\epsilon^{2}} + \kappa T \frac{d \log(1/\delta)}{m^{2}\epsilon^{2}} + \frac{\kappa G^{2}}{1 - \kappa B^{2}}\right)$$

Suppose that aggregation F is (f, κ) -robust averaging,

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

$$||F(g_t^1, ..., g_t^n) - g_t^S||^2 \le \kappa \frac{1}{|S|} \sum_{i \in S} ||g_t^i - g_t^S||^2$$

Without Distributed Polyak's Momentum

Grows with T!!

$$\mathcal{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right) \in \mathcal{O}\left(K_{\mathcal{L}} \frac{d \log(1/\delta)}{nm^{2}\epsilon^{2}} + \kappa T \frac{d \log(1/\delta)}{m^{2}\epsilon^{2}} + \frac{\kappa G^{2}}{1 - \kappa B^{2}}\right)$$

$$\mathcal{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right) \in \mathcal{O}\left(K_{\mathcal{L}} \frac{d \log(1/\delta)}{m^{2} \epsilon^{2}} \left(\frac{1}{n} + \kappa\right) + \frac{\kappa G^{2}}{1 - \kappa B^{2}}\right)$$

$$\mathcal{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right) \in \mathcal{O}\left(K_{\mathcal{L}} \frac{d \log(1/\delta)}{m^{2} \epsilon^{2}} \left(\frac{1}{n} + \kappa\right) + \frac{\kappa G^{2}}{1 - \kappa B^{2}}\right)$$

Recall that we can achieve
$$\kappa \in \mathcal{O}\left(\frac{f}{n}\right)$$

$$\mathcal{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right) \in \mathcal{O}\left(K_{\mathcal{L}} \frac{d \log(1/\delta)}{m^{2} \epsilon^{2}} \left(\frac{1}{n} + \kappa\right) + \frac{\kappa G^{2}}{1 - \kappa B^{2}}\right)$$

Recall that we can achieve
$$\kappa \in \mathcal{O}\left(\frac{f}{n}\right)$$

$$\mathcal{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right) \in \mathcal{O}\left(K_{\mathcal{L}} \frac{d \log(1/\delta)}{m^{2} \epsilon^{2}} \left(\frac{1}{n} + \kappa\right) + \frac{\kappa G^{2}}{1 - \kappa B^{2}}\right)$$

Recall that we can achieve
$$\kappa \in \mathcal{O}\left(\frac{f}{n}\right)$$

$$\mathcal{L}\left(\widehat{\theta}\right) - \min_{\theta \in \mathbb{R}^d} \mathcal{L}(\theta) \in \Omega\left(\frac{d\log(1/\delta)}{nm^2\epsilon^2} + \frac{f}{n} \cdot \frac{\log(1/\delta)}{m^2\epsilon^2} + \frac{f}{n}G^2\right)$$

$$\mathcal{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right) \in \mathcal{O}\left(K_{\mathcal{L}} \frac{d \log(1/\delta)}{m^{2} \epsilon^{2}} \left(\frac{1}{n} + \kappa\right) + \frac{\kappa G^{2}}{1 - \kappa B^{2}}\right)$$

Recall that we can achieve
$$\kappa \in \mathcal{O}\left(\frac{f}{n}\right)$$

$$\mathscr{L}\left(\widehat{\theta}\right) - \min_{\theta \in \mathbb{R}^d} \mathscr{L}(\theta) \in \Omega\left(\frac{d \log(1/\delta)}{n m^2 \epsilon^2} + \frac{f}{n} \cdot \frac{\log(1/\delta)}{m^2 \epsilon^2} + \frac{f}{n} G^2\right) \qquad \text{Assuming} \qquad (G,0)\text{-Dissimilarity}$$

$$\mathcal{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right) \in \mathcal{O}\left(K_{\mathcal{L}} \frac{d \log(1/\delta)}{m^{2} \epsilon^{2}} \left(\frac{1}{n} + \kappa\right) + \frac{\kappa G^{2}}{1 - \kappa B^{2}}\right)$$

Recall that we can achieve
$$\kappa \in \mathcal{O}\left(\frac{f}{n}\right)$$

$$\mathscr{L}\left(\widehat{\theta}\right) - \min_{\theta \in \mathbb{R}^d} \mathscr{L}(\theta) \in \Omega\left(\frac{d \log(1/\delta)}{n m^2 \epsilon^2} + \frac{f}{n} \cdot \frac{\log(1/\delta)}{m^2 \epsilon^2} + \frac{f}{n} G^2\right) \qquad \text{Assuming} \qquad \qquad (G,0)\text{-Dissimilarity}$$

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

$$||F(g_t^1, ..., g_t^n) - g_t^S||^2 \le \kappa \lambda_{\max} \left(\frac{1}{|H|} \sum_{i \in S} (g_t^i - g_t^S) (g_t^i - g_t^S)^T \right)$$

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

$$||F(g_t^1, ..., g_t^n) - g_t^S||^2 \le \kappa \lambda_{\max} \left(\frac{1}{|H|} \sum_{i \in S} (g_t^i - g_t^S) (g_t^i - g_t^S)^T \right)$$

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

$$||F(g_t^1, ..., g_t^n) - g_t^S||^2 \le \kappa \lambda_{\max} \left(\frac{1}{|H|} \sum_{i \in S} (g_t^i - g_t^S) (g_t^i - g_t^S)^T\right)$$

Suppose that aggregation F is (f, κ) -robust averaging,

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

$$||F(g_t^1, ..., g_t^n) - g_t^S||^2 \le \kappa \lambda_{\max} \left(\frac{1}{|H|} \sum_{i \in S} (g_t^i - g_t^S) (g_t^i - g_t^S)^T \right)$$

Transpose

Suppose that aggregation F is (f, κ) -robust averaging,

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

$$||F(g_t^1, ..., g_t^n) - g_t^S||^2 \le \kappa \lambda_{\max} \left(\frac{1}{|H|} \sum_{i \in S} (g_t^i - g_t^S) (g_t^i - g_t^S)^T \right)$$

Transpose

$$\mathscr{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathscr{L}\left(\theta\right) \in \mathscr{O}\left(\frac{d \log(1/\delta)}{nm^{2}\epsilon^{2}} + \kappa \cdot \frac{\log(1/\delta)}{m^{2}\epsilon^{2}} + \kappa G^{2}\right)$$

Suppose that aggregation F is (f, κ) -robust averaging,

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

 $||F(g_t^1, ..., g_t^n) - g_t^S||^2 \le \kappa \lambda_{\max} \left(\frac{1}{|H|} \sum_{i \in S} (g_t^i - g_t^S) (g_t^i - g_t^S)^T \right)$

Transpose

$$\mathscr{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathscr{L}\left(\theta\right) \in \mathscr{O}\left(\frac{d \log(1/\delta)}{nm^{2}\epsilon^{2}} + \kappa \cdot \frac{\log(1/\delta)}{m^{2}\epsilon^{2}} + \kappa G^{2}\right) \qquad \boxed{\text{Match}}$$

$$\kappa \in \mathscr{O}$$

Matches LB if $\kappa \in \mathcal{O}\left(\frac{f}{n}\right)$

Suppose that aggregation F is (f, κ) -robust averaging,

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

 $||F(g_t^1, ..., g_t^n) - g_t^S||^2 \le \kappa \lambda_{\max} \left(\frac{1}{|H|} \sum_{i \in S} (g_t^i - g_t^S) (g_t^i - g_t^S)^T \right)$

Transpose

$$\mathcal{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right) \in \mathcal{O}\left(\frac{d \log(1/\delta)}{nm^{2}\epsilon^{2}} + \kappa \cdot \frac{\log(1/\delta)}{m^{2}\epsilon^{2}} + \kappa G^{2}\right) \qquad \begin{array}{|l|} & \text{Match} \\ & \kappa \in \mathcal{O} \end{array}$$

Matches LB if $\kappa \in \mathcal{O}\left(\frac{f}{n}\right)$

Suppose that aggregation F is (f, κ) -robust averaging,

for all
$$S \subseteq [n]$$
 with $|S| = n - f$,

 $||F(g_t^1, ..., g_t^n) - g_t^S||^2 \le \kappa \lambda_{\max} \left(\frac{1}{|H|} \sum_{i \in S} (g_t^i - g_t^S) (g_t^i - g_t^S)^T \right)$

Transpose

$$\mathcal{L}\left(\theta_{T}\right) - \min_{\theta \in \mathbb{R}^{d}} \mathcal{L}\left(\theta\right) \in \mathcal{O}\left(\frac{d \log(1/\delta)}{nm^{2}\epsilon^{2}} + \kappa \cdot \frac{\log(1/\delta)}{m^{2}\epsilon^{2}} + \kappa G^{2}\right) \qquad \begin{array}{|l|} & \text{Match} \\ & \kappa \in \mathcal{O} \end{array}$$

Matches LB if $\kappa \in \mathcal{O}\left(\frac{f}{n}\right)$

Smallest Maximum Eigenvalue Averaging

Smallest Maximum Eigenvalue Averaging

$$S^* \in \arg\min_{S} \lambda_{\max} \left(\frac{1}{|S|} \sum_{i \in S} \left(g_t^i - g_t^S \right) \left(g_t^i - g_t^S \right)^{\mathrm{T}} \right)$$

Smallest Maximum Eigenvalue Averaging

$$S^* \in \arg\min_{S} \lambda_{\max} \left(\frac{1}{|S|} \sum_{i \in S} \left(g_t^i - g_t^S \right) \left(g_t^i - g_t^S \right)^{\mathrm{T}} \right)$$

$$F\left(g_t^1, ..., g_t^n\right) \triangleq g_t^{S^*}$$

Smallest Maximum Eigenvalue Averaging

$$S^* \in \arg\min_{S} \lambda_{\max} \left(\frac{1}{|S|} \sum_{i \in S} \left(g_t^i - g_t^S \right) \left(g_t^i - g_t^S \right)^{\mathrm{T}} \right)$$

$$F\left(g_t^1,...,g_t^n\right)\triangleq g_t^{S^*}$$

SMEA is (f, κ) -Spectral Robust with $\kappa \in \mathcal{O}\left(\frac{J}{n}\right)$

Smallest Maximum Eigenvalue Averaging

$$S^* \in \arg\min_{S} \lambda_{\max} \left(\frac{1}{|S|} \sum_{i \in S} \left(g_t^i - g_t^S \right) \left(g_t^i - g_t^S \right)^{\mathrm{T}} \right)$$

$$F\left(g_t^1,...,g_t^n\right)\triangleq g_t^{S^*}$$

SMEA is (f, κ) -Spectral Robust with $\kappa \in \mathcal{O}\left(\frac{J}{n}\right)$

Other Interesting Results

- Su, Lili, and Nitin H. Vaidya. "Fault-Tolerant Multi-agent Optimization: Optimal Iterative Distributed Algorithms." *Proceedings of the 2016 ACM Symposium On Principles Of Distributed Computing.* 2016.
- Charikar, Moses, Jacob Steinhardt, and Gregory Valiant. "Learning from untrusted data." *Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing*. 2017.
- Karimireddy, Sai Praneeth, Lie He, and Martin Jaggi. "Byzantine-Robust Learning on Heterogeneous Datasets via Bucketing." *International Conference on Learning Representations*. 2021.
- Farhadkhani, Sadegh, et al. "Byzantine machine learning made easy by resilient averaging of momentums." *International Conference on Machine Learning*. PMLR, 2022.

For an Overview on Robust Machine-Learning

SPRINGER NATURE

Robust Machine-Learning

Distributed Methods for Safe Al

Byzantine Machine Learning: A Primer ACM Computing Surveys, 2023

Rachid Guerraoui, Nirupam Gupta & Rafael Pinot

Thanks to

Shuo Liu

