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How to adapt functional redundancy for analyzing resilience of robust DGD

Local Phase: In each iteration ¢, each honest node 1 computes the local gradient:

Global Phase: Receiving gradients gtl, ..., g/ the server “robustly” aggregates
them, I.e., compute

c/g\t :=F(gt1,...,gf) ;

And updates the current parameters: 6,,, =6, —y, g,
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In general, (f, k)-robust averaging is impossible for « <

Coordinate-wise Trimmed Mean (CWTM) matches this
bound, up to a small constant factor
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f

We can have efficient rules that are order optimal, i.e., k € O (—)
n

NNM Is a pre-aggregation scheme that imparts order-optimal
robustness to many robust aggregation rules

|

- If Fis (f, x)-robust averaging with x € O(1) then

F - NNM is (f, x)-robust averaging with xk € O (i

“Fixing by Mixing: A Recipe for Optimal Byzantine ML under Heterogeneity.” Y. Allouah at al. AISTATS’23
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NNM Pre-aggregation Scheme

For each input vector v; determine n — f nearest neighbors
in the set of input vectors {v;, ..., V, }

Let V, be the set of n — f vectors nearest to v,

1
Map v; to z; 1= fz
n —

Define F - NNM (vl, ...,vn) = F(Zl, ...,Zn)
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Variance of z’s is less than v’s by factor O (i)
n

“Fixing by Mixing: A Recipe for Optimal Byzantine ML under Heterogeneity.” Y. Allouah et al. AISTATS’23



Empirical Observations

Agg. Rule ALIE FOE SF Worst-Case

GeoMed 92.01 = 04.35 65.61 £ 12.17 57.86 £ 10.42 57.86 £10.42
+ NNM 81.26 £ 08.91 75.27 £ 02.69 36.32 + 03.77 75.27 £ 02.69
+ Bucketing 39.83 £ 11.35 4473 + 16.477 91.30 £ 03.91 4473 = 16.477

Agg. Rule ALIE FOE SF Worst-Case

CWTM 76.16 = 07.68

69.96 £ 16.57 27.45 £ 08.83 27.45 £ 08.83

+ NNM 79.04 = 09.19 79.91 £03.94 34.78 £05.78 79.04 = 09.19

+ Bucketing 55.86 £ 10.00 42.80 £ 21.25 50.96 £ 16.53 42.80 = 21.25

CNN trained on MNIST dataset, distributed among 13 honest nodes with Dirichlet parameter of 0.1 (extreme heterogeneity). There are 4
additional adversarial nodes executing attacks: ALIE, FOE and SF. We run 800 iterations, with local batch-size of 25.
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Differential Privacy in Distributed Mini-batch GD

Local Phase: In each iteration ¢, each honest node 1 computes the local gradient:

. 1 .
8= D Clip (V4£(0,2) . C) +1,

z€SW
C

withny, ~ N (O, GIZ)P Id), where Clip(v, C) = min { 1, W} V

Global Phase: Receiving gradients gtl, ..., g/ the server “robustly” aggregates
them, I.e., compute

(/g\l‘ :ZF(gtla---agtn) ;

And updates the current parameters: 6,,, =6, —y, g,
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Distributed Differential Privacy

(e 5)-Distributed DP|

adjacent datasets D, D' € 2™ and any subset § C 7/,
Pr(A(D) € S) <ePr(AD)€ES)+6

— — = = —

“Our Data, Ourselves: Privacy via Distributed Noise Generation” C. Dwork et al. Eurocrypt 2006.
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"Rényi Differential Privacy.” Mironov, llya. IEEE CSF,2017.

Suppose € < log(1/6). There exists k > 0 such that, for suﬁiciently

_ 2C b/ T log(1/0)
small batch-size b, if opp > k—max <{ 1 , ——— '

b m e

then DP-DMGD satisfies (e, 0)-Distributed DP

— — — — R — — — R —




Privacy by DP-DMGD

Consider 1 iterations of DP-DMGD

By RDP composition and subsampling amplification theorems, we get

"Rényi Differential Privacy.” Mironov, llya. IEEE CSF,2017.

Suppose € < log(1/6). There exists k > 0 such that, for suﬁiciently

Yo br/TTog(175)
small batch-size b, if opp > k Y max § 1, —
me

|

— —

“On the Privacy-Robustness-Utility Trilemma in Distributed Learning.” Allouah, Youssef et al. ICML, 20283.
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Suppose we provide (€, 0)-distributed DP

do?
A (HT) — gelg}lff(e) e 0 (Kg ;P) Assuming NO clipping

2C b\/T log(1/6)
Substituting opp = kK — max { 1, VT loe }

b m e

Z (6;) —min Z (0) € O (Kgdlog(”‘s))

OcR? m2e?

“On the Privacy-Robustness-Utility Trilemma in Distributed Learning.” Allouah, Youssef et al. ICML, 2023.
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. dlog(1/6) (1 kG*
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“On the Privacy-Robustness-Utility Trilemma in Distributed Learning.” Allouah, Youssef et al. ICML, 2023.
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