o o WL A T
AT A s -
. atlanTTic //l/,/,l,l,l, ,',"

list T Tsimlge ST LLL

J UniversidaVigo oopinnn

(RN

\

Practical Multi-Key
Homomorphic Encryption for
Federated Average Aggregation

2nd Workshop on Principles of Distributed Learning (PODL’23)
co-located with the International Symposium on Distributed Computing DISC’23
Friday, 13 October 2023

Alberto Pedrouzo-Ulloa
apedrouzo@gts.uvigo.es, alberto.pedrouzoulloa@cea.fr

Joint work with A. Boudguiga, O. Chakraborty, R. Sirdey, O. Stan, M. Zuber
name.surname@cea.fr

V-4 4 J

mailto:apedrouzo@gts.uvigo.es
mailto:alberto.pedrouzoulloa@cea.fr
mailto:name.surname@cea.fr

Outline

® Introduction

e HE for Secure Aggregation
e Undressing HE

e What’s under the clothes
® Some outfit comparisons

® Conclusions

TUMPET

Introduction

A little bit about Federated Learning and its problems

TRUMP=T

- Example scenario for Federated Learning

e FL allows the training of ML models without explicit sharing of training data.
e A central server (Aggregator) aggregates the local training updates from Data Owners (DOs).

® Cross-silo FL: a model is built from the training sets of a reduced number of servers.
@ They are always available and computationally powerful.

This figure has been made using images from www.flaticon.com and www.stockio.com.

e Cardiovascular Risk Example Risk + Risk, + Risks

‘ & ‘ Riskagg = 3

[RlskAgg —3.Age+ 1 Weight

’ ? & Aggregated Model
Aggregated Aggregation Aggregated
Model Models
odels Model Updates Model Updates
Aggregated
Model Updateﬁ Models

tRisk3 =2.Age + 1.5 - Weight

(Risk1 =3.Age+ 1- Weight ‘ Risk, = 4 - Age + 0.5 - Weight
Model Update

Model Update Model Update

Patient | Age | Weight Patient | Age Welght Patient | Age | Weight
Ana 72 60 D o o Maria 43 56 o o D Jorge 38 66 o o o
—+——— ooo —+—+—1{ o000 000

Private Data Bob 56 89 Alice 46 73 Eve 46 78

Private Data Private Data

TRUMP=T

A toy example and some privacy risks

e |Initially proposed to avoid moving the training data out
o reducing communication costs and “ensuring data privacy.”

e Some example attacks:

o s Q in the database of a particular hospital?
o Can we reconstruct attributes of the people in the database?

/Riskl =3-Age+ 1- Weight
Risk, = 4 - Age + 0.5 - Weight
Risks = 2 - Age + 1.5 - Weight

kRiskAgg = 3-Age+1-Weight

TRUMP=T

A toy example and some privacy risks

" ® Some example attacks:

/ This figure has been made using images from www.flaticon.com and www.stockio.com. \
' 2 e A
. I Risk; = 3 - Age + 1 - Weight
|

Alice belongs to the training data?
_______________ (&

) rationt | Ago | Weight (g 9 H
l Maria 43 56 o 0

e _ ~1—1—] eee 3 4
! Q Can we infer the Age and ' ' ' I I Trammg Data
I

\\ Weight of Alice? {ivate Data| "i®® | 40 &

TQUTT]DEI'

First Local Model

MEMBERSHIP INFERENCE: TELL ME WHO YOU GO WITH, AND
I'LL TELL YOU WHO YOU ARE

. Membe rShip infe rence: https://www.cancer.gov/about-cancer/causes-prevention/risk/age
o General cancer risk & : 350 per 100000 people (aged 45 - 49)

TRUMP=T

MEMBERSHIP INFERENCE: TELL ME WHO YOU GO WITH, AND
I'LL TELL YOU WHO YOU ARE

/)
72

- . Membe rShip infe rence: https://www.cancer.gov/about-cancer/causes-prevention/risk/age
o General cancer risk & : 350 per 100000 people (aged 45 - 49)

/ This figure has been made using images from www.flaticon.com and www.stockio.com. \
[~ " = " = & == == o / \
I Q belongs to the training data? I

g 2;

ML model

\ wvate Data

nemA

b A s
2032

TRUMP=T

MEMBERSHIP INFERENCE: TELL ME WHO YOU GO WITH, AND
I'LL TELL YOU WHO YOU ARE

Zi

- . Membe rShip infe rence: https://www.cancer.gov/about-cancer/causes-prevention/risk/age
o General cancer risk & : 350 per 100000 people (aged 45 - 49)
o “Cancer risk” knowing that 2is contained in the training data: 1 per 2 people

/ This figure has been made using images from www.flaticon.com and www.stockio.com. \
[~ " = " = & == == o / \
I Q belongs to the training data? I

I % Balanced training data
e (ol oMo N

ML model ““-
(o) A
o Q Qn

Training Data
K wvate Data //

TRUMP=T

TRUMP=T

Some basics of HE

RLWE and toy examples with Homomorphic Encryption (HE)

10

(Polynomial) Ring Learning with Errors

* (P)RLWE problem: RLWE relies upon the computational
indistinguishability between the following pairs of samples:

Elements chosen ntormiy s rancom
@0 -@he) ~@w

X[Z] [Elements drawn from the error distribution}

TQUIT]DH

11

= (Polynomial) Ring Learning with Etrors

* (P)RLWE problem: RLWE relies upon the computational
indistinguishability between the following pairs of samples:

[How difficult is to distinguish highly depends on the length of the polynomials. }

Elementschosen untormiy s rancom
@0 -@he) ~@w

X[Z] [Elements drawn from the error distribution}

TRUMPET R

12

~ PLWE/RLWE: BGV-type example for HE

= ///)
/4

* (P)RLWE problem: RLWE relies upon the computational
indistinguishability between the following pairs of samples:

—
@0 =B bl ~ (@8

[X[Z] 1[Elements drawn from the error d|str|but|on}[Zt [Z]/ 1 + z)}

TQUIT]D:_l'

13

An example of a simple BGV-type HE

e (Consider two epgcryntions:
Enc(ml) = (al, bl = —a18 +teg + ml)

Enc(ms) = (as,by = —ass + tes + my)

* Decryption:
(by + a1s mod 1 + 2") mod g = my + tey

e Homomorphic Addition:
Enc(mi + ma) = (Gadd = @1 + a2, badd = b1 + b2)
Enc(my + m2) = (Gadd, badd = —Qadds + t(e1 + e2) + (M1 + ma2))

TRJUMPIT B

An example of a simple BGV-type HE

e Consider two encryptions:
Enc(ml) = (CLl, bl = —a1S + t@l —+ ml)

Enc(ms) = (as,by = —ass + tes + my)

* Decryption:
(by + a1s mod 1 + 2") mod g = my + tey

e Homomorphic Addition:
Enc(mi + ma) = (Gadd = @1 + a2, badd = b1 + b2)
Enc(my + m2) = (Gadd, badd = —Qadds + t(e1 + e2) + (M1 + ma2))

TRJUMPIT B

15

An example of a simple BGV-type HE

e Consider two encryptions:
Enc(ml) = (CLl, bl = —a1S + t@l -+ ml)
Enc(mg) = (CLQ, b2 = —Q9S + t@g -+ mg)

* Decryption:
(by + a1s mod 1 + 2") mod g = my + tey

Enc(m1 + mz) == (aadd = ay + ao, badd = bl + bg)

Enc(my + msa) = (Qadd, badd = —@adas + t(e1 + €2) + (M1 + ma))

TRJUMPIT B

16

An example of a simple BGV-type HE

e Consider two encryptions:
Enc(ml) = (CLl, bl = —a1S + t@l -+ ml)
Enc(mg) = (CLQ, b2 = —Q9S + t@g -+ mg)

* Decryption:
(by + a1s mod 1 + 2") mod g = my + tey

Enc(m1 + mz) == (aadd = ay + ao, badd = bl + bg)

Enc(my + msa) = (Qadd, badd = —@adas + t(e1 + €2) + (M1 + ma))

* Homomorphic Multiplication:
« ltis slightly more complicated

TRJUMPIT B

17

TQUTT]DEI'

HE for Secure Aggregation

Achieving protection against the aggregator

18

‘Secure Aggregation:
Protection against the aggregator

e Homomorphic Encryption (HE) counters with the confidentiality threats from the Aggregator.

This figure has been made using images from www.flaticon.com and www.stockio.com.

Secure Federated Aggregation

wédy
1=k
AR

Aggregation

Aggregated Model

|}
Aggregated
Models

Model Updates

Data Owners Data Owners Data Owners
(Hospitals) (Hospitals) (Hospitals)

Model Update

Private Data

TRUMP=T

‘Secure Aggregation:

Protection against the aggregator

o It seems to be a perfect fit for secure aggregation.

o It respects the communication flow of unprotected FL.

Homomorphic Encryption (HE) counters with the confidentiality threats from the Aggregator.

wédy
1=k
AR

Aggregation

Aggregated Model

:
Model Update

[)
|}
Aggregated ®
Models
Model Updates a
.
Aggregated
Models
Data Owners Data Owners
(Hospitals) (Hospitals)
Model Update
000
| ooo

Private Data

TRUMP=T

[)
*
% Aggregated
Models
Model Updates

Data Owners
(Hospitals)

20

' Secure Aggregation:
Protection against the aggregator

Single-key HE imposes the need of

O atrusted decryptor.
O

non-colluding assumption among Aggregator and decryptor.

This figure has been made using images from www.flaticon.com and www.stockio.com.
Secure Federated Aggregation
4 I '

»wév @
2B«
Aggregated Model
A AR !
=
Model Updates

f
Models
' Aggregated
anate Key TMOdS'UPdateS Models]
Public Key #
K Data Owners
(Hospitals)

/ Data Owners Data Owners
(Hospitals) (Hospitals)
Model Update Model Update
000
000
Private Data ‘ I ' Private Data Private Data

Aggregation

TRUMP=T

Single-key HE vs Multi-key HE

e Our scenario requires to incorporate multiple keys into HE.

o Prevents decryption without permission of other participants.

n o

ez .»

Private Key |
. Public Key #

[Lt
¢

Single key

TRUMPET R

4

uep

50

=[O

/&

® Bl ea.n
L.ﬁ b b b
Multiple keys

22

(S)HE looks nice, but maybe too many clothes for FL

Our motivation:
e Many works address the problem of secure aggregation in FL.
® To the best of our knowledge, HE has not been yet fully
optimized for this setting.

Our objective:
e Tailor and optimize HE constructions for secure average
aggregation.

We propose:
e A lightweight communication-efficient multi-key approach
suitable for the Federated Averaging rule.

TQUTTP:_I'

TQUFT]:’:_I'

Undressing HE:
a talk with “streaptease”

This is not what it seems

24

First outfit: Using a BFV-type encryption

* RPublic key generation:

PK = Enc(0) = (a,b = —(as + €))

* Encryption:
* We encryptamessage m € R, = Z,|X|/(1+ X")

Enc(m) = (co = PK[0Ju + €9, c; = PK[1Ju+ €1 + A -m) € R}
La/p]

* Multiple keys with an (L-out-of-L) threshold variant of BFV:
SK28281++SL

TUMPET

25

First outfit: Using a BFV-type encryption

Public key generation:
PK = Enc(0) = (a,b = —(as + €))

Encryption:
 We encrypta message m € R, = Z,|X|/(1 + X"

Multiple keys with an (L-out-of-L) threshold variant of BFV:
SK28281++SL

TUMPET

26

First outfit: Using a BFV-type encryption

* Public key generation:
PK = Enc(0) = (a,b = —(as + €))

* Encryption:
* We encryptamessage m € R, = Z,|X|/(1+ X")

Enc(m) = (co = PK[0Ju + €9, c; = PK[1Ju+ €1 + A -m) € R}
Lq/p)

Multiple keys with an (L-out-of-L) threshold variant of BFV:

SK28281++SL

TUMPET

27

Take it off all L
h-

* The public key is not needed:
 Each Data Owner can encrypt with its own secret key.

(a,b; = as; +e; + A -my) y

) 1

* Encrypted updates can be aggregated on the fly:
* By sharing the same “a”, then “b” components are directly aggregated.

(a,Zbi:a(Zsi)—l—Zei—l—A-Zmi:as—|—e—|—A-m>

)

* Thereis no need to send “a”.

TRUMP2ET [

28

Take it off all

Each Data Owner can encrypt with its own secret key.
(a,b; = as; +e; + A -my) y

) 10

Encrypted updates can be aggregated on the fly:
* By sharing the same “a”, then “b” components are directly aggregated.

(a,Zbi:a(Zsi)+Zei+A-Zmi:as—|—e—|—A-m>

)

* Thereis no need to send “a”.

29

TRJUMPIT B

- &
Take it off all L
h-

* The public key is not needed:
 Each Data Owner can encrypt with its own secret key.

(a,b; = as; +e; + A -my)

@u
) 10

* Encrypted updates can be aggregated on the fly:

* By sharing the same “a”, then “b” components are directly aggregated.

(a,Zbi:a(Zsi)+Zei+A-Zmi:as—|—e—|—A-m>

)

* Thereis no need to send “a”.

TRJUMPIT B

30

Take 1t off all L
i

* The public key is not needed:
 Each Data Owner can encrypt with its own secret key.

x,bizasi—l—ei—l—A-mi)

@u
) 1

* Encrypted updates can be aggregated on the fly:
* By sharing the same “a”, then “b” components are directly aggregated.

87252'ZCL(ZSZ-)—!—ZGZ'—I—A-Z?TLZ-:as—l—e—|—A-m>

)

* | There is no need to send “a”.

TRJUMPIT B

31

Take it off all lasi], = |p/q - as]

* The public key is not needed:
* Each Data Owner can encrypt with its own secret key.

X,bizasi—kei—kA-mi)

). I

)+

* Encrypted updates can be aggregated on the fly:
* By sharing the same “a”, then “b” components are directly aggregated.

*Zbia(Zsi)—i—Zei—l—A-Zmias—!—e—!—A-m)

* Thereis no heed to send “a”.

To have distributed decryption, each DO has to send |as; | .

but it also decrypts the input ciphertext!

TRUMP=T

32

TQUTT]DEI'

Proposed solution
Take it off all, but carefully

33

| Masking the secret keys:

Proposed solution: You can leave your hat on...

(CL, bz = CL(Si + share,-) +e; + A- mz)

Building blocks: 0

TRUMP=T

Additive secret shares of zero Z share; = 0

A PRF is used to agree in the same “a” per each round.

Next lemma is used to remove the error in a distributed way:
Lemma 1 (Lemma 1 [3]). Let plq, « sz\" and y = x + e mod q for some
e € RY with |le] < B < q/p. Then Pr (Ly]p # |z], mod p) < %.

9

34

Building blocks:

TRUMP=T

Masking the secre

Proposed solution: You can leave your hat on...

Additive secret shares of zero Z share; = 0

A PRF is used to agree in the same “a” per each round.

Next lemma is used to remove the error in a distributed way:
Lemma 1 (Lemma 1 [3]). Let plq, « sz\" and y = x + e mod q for some
e € RY with |le] < B < q/p. Then Pr (Ly]p # |z], mod p) < %.

35

Proposed solution: You can leave your hat on...

Masking the secret keys: (a,b; = a(s; + share;) +e; + A - m;)

(Zbi)a(s+25harei)+ea S +\6/+A-\m/
¢ N , DSt D€ i Mi

Building blocks: 0

TRUMP=T

Additive secret shares of zero Z share; = 0

A PRF Is used to agree in the same “a” per each round.

Next lemma is used to remove the error in a distributed way:
Lemma 1 (Lemma 1 [3]). Let plq, « sz\" and y = x + e mod q for some
e € RY with |le] < B < q/p. Then Pr (Ly]p # |z], mod p) < %.

0

36

Proposed solution: You can leave your hat on...

Masking the secret keys: (a,b; = a(s; + share;) +e; + A - m;)

(Z b@) =a(s+ Zsharei) te=as t et A- Jn

N L , Ez Si Ez €; Zz m;
Building blocks: 0
e Additive secret shares of zero share; = 0

TRUMP=T

1

A PRF is used to agree in the same “a” per each round.

Next lemma is used to remove the error in a distributed way:
Lemma 1 (Lemma 1 [3]). Let plq, « sz\" and y = x + e mod q for some
e € RY with |le] < B < q/p. Then Pr (Ly]p # |z], mod p) < %.

0

37

Proposed solution: You can leave your hat on...

Masking the secret keys: (a,b; = a(s; + share;) +e; + A - m;)

_ , _ , &
(Zb@)a(s+25harez)+e azs +56/+A Sm/

Building blocks: 0

e Additive secret shares of zero Z share; = 0

 APRFis used to agree in the same “a” per each round.

e Nextlemma is used to remove the error in a distributed way:

Lemma 1 (Lemma 1 [3]). Let plq, « Ré_{\’v and y = x + e mod q for some

ec RE}V with | €|« < B < q/p. Then Pr (Ly]p # |z], mod p) < —2””qNB.

TRJUMP=T 38

-

Proposed solution: You can leave your hat on

* Next lemma is used to remove the error in a distributed way:

Lemma 1 (Lemma 1 [3]). Let plq, = « Ré_{v and y = x + e mod q for some
ec RE}V with |€[|oc < B < q/p. Then Pr (|y], # =], mod p) < —2””qNB.

* | 't can be used to show that [b], = |as + e] +m # |as], +m with at most

probability Pr(Ev)

* By bounding Pr(Ev) <27":

,‘i

2
q>4 n NAggRounds NCtxts PerRound * P ° L Blnlt

TRUMP=T

39

Proposed solution: You can leave your hat on

* Next lemma is used to remove the error in a distributed way:
Lemma 1 (Lemma 1 [3]). Let plq, + sz\" and y = x + e mod q for some

e € RY with |le] < B < q/p. Then Pr (Ly]p # |], mod p) < —2””;\[3.

* It can be used to show that [b], = |as +] +m # |as], +m with at most
probability Pr(Ev)

* By bounding Pr(Ev) <27":

TRUMP=T

40

TQUFT]:’:_I'

What’s under the clothes

Some nice surprises

41

)

TRUMP=T

Dishonest Data Owners

PK = Enc(0) ||

PK = Enc(0) ||
N =

__

..

Aggregation

42

Some nice properties

e Limiting ciphertexts’ malleability

o _n

By assuming the Common Reference String (CRS) model, a different “a” term is

fixed per each aggregation round.

e Upgrade to malicious aggregators

o The Aggregator can only apply additive transformations without being detected.
o An extra condition check can be embedded into ciphertexts to verify honest
behavior.

e Stronger semi-honest DOs:

o As thereis no public key, DOs cannot generate encryptions of the global secret
key.

TRUMP=T

43

TRUMP=T

Some nice properties

e Limiting ciphertexts’ malleability

o _n

o By assuming the Common Reference String (CRS) model, a different “a” termis
fixed per each aggregation round.

e Upgrade to malicious aggregators

The Aggregator can only apply additive transformations without being detected.

An extra condition check can be embedded into ciphertexts to verify honest
behavior.

e Stronger semi-honest DOs:

o As thereis no public key, DOs cannot generate encryptions of the global secret
key.

44

Some nice properties

e Limiting ciphertexts’ malleability

o _n

o By assuming the Common Reference String (CRS) model, a different “a” termis
fixed per each aggregation round.

e Upgrade to malicious aggregators
o The Aggregator can only apply additive transformations without being detected.

o An extra condition check can be embedded into ciphertexts to verify honest
behavior.

e Stronger semi-honest DOs:

As there is no public key, DOs cannot generate encryptions of the global secret
key.

TUMP=T 45

An upgrade to malicious aggregators

e An extra condition check can be embedded into Secret-Key ciphertexts (e.g., 6 - m
with 6 unknown to aggregator). This verifies the honest behavior during aggregation.

I — i
=t

000 J ;
Enc(d-my) |i

& | i
1 .
-\ .'
ﬁ ___________________ a _______________ -
: ™

>
- &) | oo ||) | S e
>

’a ﬁ v\.
! N ~
000 | . -

800 | | Enc(ms) Enc(d - my)

1
. - N b; l
= =) : K

TQUTTP:_I'

Aggregation

46

TQUTTP:_I'

Some outfit comparisons

Comparing with others HE-based solutions

47

o 4

. Comparison with other solutions

aggregated model

M: Model Size
i f
bitaiirold Ours [2] [5] [3] [4] [6]
M = constant - n
Agg. Comp. Cost O(MN) add. O(MN) mult. O(MN) add. O(MN) add. O(MN?)
DO Comp. Cost LWE: O(Mn) mult. O(M) exp. O(M logM) O(M logM) O(MN + N?)
RLWE: O(M logM) mult. mult. mult.
Total Com. Cost O(MN) O(MN) O(MN) O(MN) O(MN + N?)
Multiple Keys Q (N
Passive parties
Malicious Agg. Verify Agg. Verify Agg. O S only DOs input
privacy if T > N/2
Assumptions LWE/RLWE Paillier RLWE RLWE T non-colluding
DOs
Flexible Dec. only DOs contributing to) O S required T out of N

DOs

TQUn’]Dﬂ'

48

Conclusions
When you go to the beach, all you truly need is a bathing suit!

TQUn’]Dﬂ'

49

Conclusions

e We tailor and optimize HE constructions for secure average aggregation.

e Multi-key homomorphic encryption mitigates collusion attacks between
aggregator and data owners.

e We propose a lightweight communication-efficient multi-key approach suitable
for the Federated Averaging rule.

o Communication cost per party is reduced approximately

m by a half with RLWE.
m from quadratic to linear in terms of lattice dimension if considering LWE.

o Easy to update to be secure against malicious aggregators.

TUMPT 50

IS S

//

[/l 117

jI11110sy

--
mm
-m

/////////////
[/ 7777 o,
(I 0 s n gy,

Y 4
jiiiiNng, T
LT RS
References: Tl
1\

[1] Mohamad Mansouri, Melek Onen, Wafa Ben Jaballah, and Mauro Conti, “Sok: Secure aggregation based on
cryptographic schemes for federated learning,” Proc. Priv. Enhancing Technol., vol. 2023, no. 1, pp. 140-157, 2023.

[2] Alberto Pedrouzo-Ulloa, Aymen Boudguiga, Olive Chakraborty, Renaud Sirdey, Oana Stan, and Martin Zuber,
“Practical multi-key homomorphic encryption for more flexible and efficient secure federated aggregation
(preliminary work),” IACR Cryptol. ePrint Arch., p. 1674, 2022. Published in IEEE CSR 2023: 612-617.

[3] Arnaud Grivet Sébert, Renaud Sirdey, Oana Stan, and Cédric Gouy-Pailler, “Protecting data from all parties:
Combining FHE and DP in federated learning,” CoRR, vol. abs/2205.04330, 2022.

[4] Christian Mouchet, Juan Ramdn Troncoso-Pastoriza, Jean-Philippe Bossuat, and Jean-Pierre Hubaux, “Multiparty
homomorphic encryption from ring-learning-with-errors,” Proc. Priv. Enhancing Technol., vol. 2021, no. 4, pp.
291-311, 2021.

[5] Abbass Madi, Oana Stan, Aurélien Mayoue, Arnaud Grivet-Sébert, Cédric Gouy-Pailler, and Renaud Sirdey, “A /

secure federated learning framework using homomorphic encryption and verifiable computing,” 2021, pp. 1-8.

Daniel Ramage, Aaron Segal, and Karn Seth, “Practical secure aggregation for privacy-preserving machine /
in ACM SIGSAC CCS. 2017, pp. 1175-1191, ACM.

[6] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Saw;:/,////
i

Bonus slides: An example of a simple BGV-type HE

e (Consider two epgcryntions:
Enc(ml) = (CLl, bl = —a18 +teg + ml)

Enc(ms) = (as,by = —ass + tes + my)

* Decryption:
(by + a1s mod 1 + 2") mod g = my + tey

e Homomorphic Addition:
Enc(mi + ma) = (Gadd = @1 + a2, badd = b1 + b2)
Enc(my + m2) = (Gadd, badd = —Qadds + t(e1 + e2) + (M1 + ma2))

TRUMP=T

Bonus slides: An example of a simple BGV-type HE

e Consider two encryptions:
Enc(ml) = (CLl, bl = —a1S + t@l —+ ml)

Enc(ms) = (as,by = —ass + tes + my)

* Decryption:
(by + a1s mod 1 + 2") mod g = my + tey

e Homomorphic Addition:
Enc(mi + ma) = (Gadd = @1 + a2, badd = b1 + b2)
Enc(my + m2) = (Gadd, badd = —Qadds + t(e1 + e2) + (M1 + ma2))

TRUMP=T

Bonus slides: An example of a simple BGV-type HE

e Consider two encryptions:
Enc(ml) = (al, bl = —a18 +teg + ml)
Enc(mg) = (CLQ, b2 = —Q9S + t@g -+ mg)

* Decryption:
(by + a1s mod 1 + 2") mod g = my + tey

Enc(m1 + mz) == (aadd = ay + ao, badd = bl + bg)

Enc(my + msa) = (Qadd, badd = —@adas + t(e1 + €2) + (M1 + ma))

TRJUMPIT B

TRUMP=T

Bonus slides: An example of a simple BGV-type HE

Consider two encryptions:
Enc(ml) = (CLl, bl = —a1S + t@l —+ ml)

Enc(mg) = (CLQ, b2 = —Q9S + t@g -+ mg)
Decryption:

(by + a1s mod 1 + 2") mod g = my + tey
Homomorphic Multiplication:

« I It is slightly more complicated

Enc(mlmg) = (afmulta brmult s Cmu|t) = (a1a2, a1by + agby, 5152)

 The number of polynomial elements increases. Decryption is now:

(Cmutt + bmuits + @muies® mod 1+ 2™) mod g = myma + temun

56

Bonus slides: An example of a simple BGV-type HE

e Consider two encryptions:
Enc(ml) = (al, bl = —a18 +teg + ml)
Enc(mg) = (CLQ, b2 = —Q9S + t@g -+ mg)

* Decryption:
(by + a1s mod 1 + 2") mod g = my + tey

e Homomorphic Multiplication:
« Itis slightly more complicated

Enc(mlmg) = (afmulta brmult s Cmu|t) = (a1a2, a1by + agby, 5152)

« | The number of polynomial elements increases. Decryption is now:
(Cmutt + bmuteS + Amuies” mod 1 + 2™) mod ¢ = mima + temui

TRUMP=T

Bonus slides: An example of a simple BGV-type HE

* Homomorphic Multiplication:

« ltis slightly more complicated
Enc(mlmg) — (afmulta Dmult Cmu|t) = (a1a2, a1by + asby, 5152)

 The number of polynomial elements increases. Decryption is now:

(Cmutt + bmuits + @muies® mod 1+ 2™) mod g = myma + temun

« | “Relinearization step” is used to relinearize the “decryption circuit”:
Re“nearization (amultp bmult; Cmult) — (a/relim brelin)

(brelin + ArelinS mod 1 + Zn) mod q = 1mi1msy + t(emult + 6relin)

TRUMP=T

58

Proposed solution: some extra details

The distributed decryption introduces an extra error component

Edistributed = |05 | p Z Las;] p

PI’(EV) < 2-n- NAggRounds ’ NCtxts.PerRound : p' : BAgg
- q

2 2 2 K
q Z 4-n”- NAggRounds : NCtxts.PerRound *p- L= - Blnit -2

Input per DO Decryption share per DO| Aggregator output | Decrypted result

NModelParam - 1082 4| NModelParam - 1082 P’ | NModelParam * 1082 P’ | NModelParam * 10g2 P

Table 2. Communication costs per party in each aggregation round.

TRUMP=T

Proposed solution: some extra details

* The distributed decryption introduces an extra error component
Edistributed = |15 p E Lasi—‘p

 f It can be removed with an additional rounding phase (g > p’ > p)

PI’(EV) < 2-n- NAggRounds ’ NCtxts.PerRound : p' : BAgg

q

2 2 2 K
q Z 4-n”- NAggRounds : NCtxts.PerRound *p- L= - Blnit -2

Input per DO Decryption share per DO| Aggregator output | Decrypted result

NModelParam - 1082 4| NModelParam - 1082 P’ | NModelParam * 1082 P’ | NModelParam * 10g2 P

Table 2. Communication costs per party in each aggregation round.

TRUMP=T

60

Proposed solution: some extra details

* The distributed decryption introduces an extra error component
Edistributed = |15 p E Lasi—‘p

i
* |t can be removed with an additional rounding phase (g > p’ > p)

PI’(EV) < 2-n- NAggRounds ’ NCtxts.PerRound : p' : BAgg
- q

2 2 2 K
q Z 4-n”- NAggRounds : NCtxts.PerRound *p- L= - Blnit -2

Input per DO Decryption share per DO| Aggregator output | Decrypted result

NModelParam - 1082 4| NModelParam - 1082 P’ | NModelParam * 1082 P’ | NModelParam * 10g2 P

Table 2. Communication costs per party in each aggregation round.

TRUMP=T

61

