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Introduction

A little bit about Federated Learning and its problems
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- Example scenario for Federated Learning

e FL allows the training of ML models without explicit sharing of training data.
e A central server (Aggregator) aggregates the local training updates from Data Owners (DOs).

® Cross-silo FL: a model is built from the training sets of a reduced number of servers.
@ They are always available and computationally powerful.

This figure has been made using images from www.flaticon.com and www.stockio.com.

e Cardiovascular Risk Example Risk + Risk, + Risks

‘ & ‘ Riskagg = 3

[RlskAgg —3.Age+ 1 Weight

’ ? & Aggregated Model
Aggregated Aggregation Aggregated
Model Models
odels Model Updates Model Updates
Aggregated
Model Updateﬁ Models

tRisk3 =2.Age + 1.5 - Weight

(Risk1 =3.Age+ 1- Weight ‘ Risk, = 4 - Age + 0.5 - Weight
Model Update

Model Update Model Update

Patient | Age | Weight Patient | Age Welght Patient | Age | Weight
Ana 72 60 D o o Maria 43 56 o o D Jorge 38 66 o o o
—+——— ooo —+—+—1{ o000 000

Private Data Bob 56 89 Alice 46 73 Eve 46 78

Private Data Private Data

TRUMP=T




A toy example and some privacy risks

e |Initially proposed to avoid moving the training data out
o reducing communication costs and “ensuring data privacy.”

e Some example attacks:

o s Q in the database of a particular hospital?
o Can we reconstruct attributes of the people in the database?

/Riskl =3-Age+ 1- Weight
Risk, = 4 - Age + 0.5 - Weight
Risks = 2 - Age + 1.5 - Weight

kRiskAgg = 3-Age+1-Weight
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A toy example and some privacy risks

" ® Some example attacks:

/ This figure has been made using images from www.flaticon.com and www.stockio.com. \
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MEMBERSHIP INFERENCE: TELL ME WHO YOU GO WITH, AND
I'LL TELL YOU WHO YOU ARE

. Membe rShip infe rence: https://www.cancer.gov/about-cancer/causes-prevention/risk/age
o General cancer risk & : 350 per 100000 people (aged 45 - 49)
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MEMBERSHIP INFERENCE: TELL ME WHO YOU GO WITH, AND
I'LL TELL YOU WHO YOU ARE
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- . Membe rShip infe rence: https://www.cancer.gov/about-cancer/causes-prevention/risk/age
o General cancer risk & : 350 per 100000 people (aged 45 - 49)

/ This figure has been made using images from www.flaticon.com and www.stockio.com. \
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MEMBERSHIP INFERENCE: TELL ME WHO YOU GO WITH, AND
I'LL TELL YOU WHO YOU ARE

Zi

- . Membe rShip infe rence: https://www.cancer.gov/about-cancer/causes-prevention/risk/age
o General cancer risk & : 350 per 100000 people (aged 45 - 49)
o “Cancer risk” knowing that 2is contained in the training data: 1 per 2 people

/ This figure has been made using images from www.flaticon.com and www.stockio.com. \
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Some basics of HE

RLWE and toy examples with Homomorphic Encryption (HE)
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(Polynomial) Ring Learning with Errors

* (P)RLWE problem: RLWE relies upon the computational
indistinguishability between the following pairs of samples:

Elements chosen ntormiy s rancom
@0 -@he) ~@w

X[Z] [ Elements drawn from the error distribution}

TQUIT]DH
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= (Polynomial) Ring Learning with Etrors

* (P)RLWE problem: RLWE relies upon the computational
indistinguishability between the following pairs of samples:

[How difficult is to distinguish highly depends on the length of the polynomials. }

Elementschosen untormiy s rancom
@0 -@he) ~@w

X[Z] [ Elements drawn from the error distribution}
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~  PLWE/RLWE: BGV-type example for HE

= /// )
/4

* (P)RLWE problem: RLWE relies upon the computational
indistinguishability between the following pairs of samples:

—
@0 =B bl ~ (@8

[X[Z] 1[ Elements drawn from the error d|str|but|on}[Zt [Z]/ 1 + z )}
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An example of a simple BGV-type HE

e (Consider two epgcryntions:
Enc(ml) = (al, bl = —a18 +teg + ml)

Enc(ms) = (as,by = —ass + tes + my)

* Decryption:
(by + a1s mod 1 + 2") mod g = my + tey

e Homomorphic Addition:
Enc(mi + ma) = (Gadd = @1 + a2, badd = b1 + b2)
Enc(my + m2) = (Gadd, badd = —Qadds + t(e1 + e2) + (M1 + ma2))

TRJUMPIT B




An example of a simple BGV-type HE

e Consider two encryptions:
Enc(ml) = (CLl, bl = —a1S + t@l —+ ml)
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e Homomorphic Addition:
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An example of a simple BGV-type HE

e Consider two encryptions:
Enc(ml) = (CLl, bl = —a1S + t@l -+ ml)
Enc(mg) = (CLQ, b2 = —Q9S + t@g -+ mg)

* Decryption:
(by + a1s mod 1 + 2") mod g = my + tey

Enc(m1 + mz) == (aadd = ay + ao, badd = bl + bg)

Enc(my + msa) = (Qadd, badd = —@adas + t(e1 + €2) + (M1 + ma))

TRJUMPIT B
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An example of a simple BGV-type HE

e Consider two encryptions:
Enc(ml) = (CLl, bl = —a1S + t@l -+ ml)
Enc(mg) = (CLQ, b2 = —Q9S + t@g -+ mg)

* Decryption:
(by + a1s mod 1 + 2") mod g = my + tey

Enc(m1 + mz) == (aadd = ay + ao, badd = bl + bg)

Enc(my + msa) = (Qadd, badd = —@adas + t(e1 + €2) + (M1 + ma))

* Homomorphic Multiplication:
« ltis slightly more complicated

TRJUMPIT B
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HE for Secure Aggregation

Achieving protection against the aggregator
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‘Secure Aggregation:
Protection against the aggregator

e Homomorphic Encryption (HE) counters with the confidentiality threats from the Aggregator.

This figure has been made using images from www.flaticon.com and www.stockio.com.

Secure Federated Aggregation
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‘Secure Aggregation:

Protection against the aggregator

o It seems to be a perfect fit for secure aggregation.

o It respects the communication flow of unprotected FL.

Homomorphic Encryption (HE) counters with the confidentiality threats from the Aggregator.
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' Secure Aggregation:
Protection against the aggregator

Single-key HE imposes the need of

O atrusted decryptor.
O

non-colluding assumption among Aggregator and decryptor.

This figure has been made using images from www.flaticon.com and www.stockio.com.
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Single-key HE vs Multi-key HE

e Our scenario requires to incorporate multiple keys into HE.

o Prevents decryption without permission of other participants.

n o

ez .»

Private Key |
. Public Key #

[ Lt
¢

Single key
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(S)HE looks nice, but maybe too many clothes for FL

Our motivation:
e Many works address the problem of secure aggregation in FL.
® To the best of our knowledge, HE has not been yet fully
optimized for this setting.

Our objective:
e Tailor and optimize HE constructions for secure average
aggregation.

We propose:
e A lightweight communication-efficient multi-key approach
suitable for the Federated Averaging rule.

TQUTTP:_I'
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Undressing HE:
a talk with “streaptease”

This is not what it seems
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First outfit: Using a BFV-type encryption

* RPublic key generation:

PK = Enc(0) = (a,b = —(as + €))

* Encryption:
* We encryptamessage m € R, = Z,|X|/(1+ X")

Enc(m) = (co = PK[0Ju + €9, c; = PK[1Ju+ €1 + A -m) € R}
La/p]

* Multiple keys with an (L-out-of-L) threshold variant of BFV:
SK28281++SL

TUMPET
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First outfit: Using a BFV-type encryption

* Public key generation:
PK = Enc(0) = (a,b = —(as + €))

* Encryption:
* We encryptamessage m € R, = Z,|X|/(1+ X")

Enc(m) = (co = PK[0Ju + €9, c; = PK[1Ju+ €1 + A -m) € R}
Lq/p)

Multiple keys with an (L-out-of-L) threshold variant of BFV:

SK28281++SL

TUMPET
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Take it off all L
h-

* The public key is not needed:
 Each Data Owner can encrypt with its own secret key.

(a,b; = as; +e; + A -my) y

) 1

* Encrypted updates can be aggregated on the fly:
* By sharing the same “a”, then “b” components are directly aggregated.

(a,Zbi:a(Zsi)—l—Zei—l—A-Zmi:as—|—e—|—A-m>

)

* Thereis no need to send “a”.

TRUMP2ET [
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Take it off all

Each Data Owner can encrypt with its own secret key.
(a,b; = as; +e; + A -my) y

) 10

Encrypted updates can be aggregated on the fly:
* By sharing the same “a”, then “b” components are directly aggregated.

(a,Zbi:a(Zsi)+Zei+A-Zmi:as—|—e—|—A-m>

)

* Thereis no need to send “a”.

29
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Take it off all L
h-

* The public key is not needed:
 Each Data Owner can encrypt with its own secret key.

(a,b; = as; +e; + A -my)

@u
) 10

* Encrypted updates can be aggregated on the fly:

* By sharing the same “a”, then “b” components are directly aggregated.

(a,Zbi:a(Zsi)+Zei+A-Zmi:as—|—e—|—A-m>

)

* Thereis no need to send “a”.
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Take 1t off all L
i

* The public key is not needed:
 Each Data Owner can encrypt with its own secret key.

x,bizasi—l—ei—l—A-mi)

@u
) 1

* Encrypted updates can be aggregated on the fly:
* By sharing the same “a”, then “b” components are directly aggregated.

87252'ZCL(ZSZ-)—!—ZGZ'—I—A-Z?TLZ-:as—l—e—|—A-m>

)

* | There is no need to send “a”.

TRJUMPIT B
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Take it off all lasi], = |p/q - as]

* The public key is not needed:
* Each Data Owner can encrypt with its own secret key.

X,bizasi—kei—kA-mi)

). I

)+

* Encrypted updates can be aggregated on the fly:
* By sharing the same “a”, then “b” components are directly aggregated.

*Zbia(Zsi)—i—Zei—l—A-Zmias—!—e—!—A-m)

* Thereis no heed to send “a”.

To have distributed decryption, each DO has to send |as; | .

but it also decrypts the input ciphertext!

TRUMP=T
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Proposed solution
Take it off all, but carefully

33



| Masking the secret keys:

Proposed solution: You can leave your hat on...

(CL, bz = CL(Si + share,-) +e; + A- mz)

Building blocks: 0

TRUMP=T

Additive secret shares of zero Z share; = 0

A PRF is used to agree in the same “a” per each round.

Next lemma is used to remove the error in a distributed way:
Lemma 1 (Lemma 1 [3]). Let plq,  « sz\" and y = x + e mod q for some
e € RY with |le] < B < q/p. Then Pr (Ly]p # |z ], mod p) < %.

9
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Building blocks:
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Masking the secre

Proposed solution: You can leave your hat on...

Additive secret shares of zero Z share; = 0

A PRF is used to agree in the same “a” per each round.

Next lemma is used to remove the error in a distributed way:
Lemma 1 (Lemma 1 [3]). Let plq,  « sz\" and y = x + e mod q for some
e € RY with |le] < B < q/p. Then Pr (Ly]p # |z ], mod p) < %.
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Proposed solution: You can leave your hat on...

Masking the secret keys: (a,b; = a(s; + share;) +e; + A - m;)

(Zbi)a(s+25harei)+ea S +\6/+A-\m/
¢ N , DSt D€ i Mi

Building blocks: 0

TRUMP=T

Additive secret shares of zero Z share; = 0

A PRF Is used to agree in the same “a” per each round.

Next lemma is used to remove the error in a distributed way:
Lemma 1 (Lemma 1 [3]). Let plq,  « sz\" and y = x + e mod q for some
e € RY with |le] < B < q/p. Then Pr (Ly]p # |z ], mod p) < %.

0
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Proposed solution: You can leave your hat on...

Masking the secret keys: (a,b; = a(s; + share;) +e; + A - m;)

(Z b@) =a(s+ Zsharei) te=as t et A- Jn

N L , Ez Si Ez €; Zz m;
Building blocks: 0
e Additive secret shares of zero share; = 0

TRUMP=T
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A PRF is used to agree in the same “a” per each round.

Next lemma is used to remove the error in a distributed way:
Lemma 1 (Lemma 1 [3]). Let plq,  « sz\" and y = x + e mod q for some
e € RY with |le] < B < q/p. Then Pr (Ly]p # |z ], mod p) < %.

0
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Proposed solution: You can leave your hat on...

Masking the secret keys: (a,b; = a(s; + share;) +e; + A - m;)

_ , _ , &
(Zb@)a(s+25harez)+e azs +56/+A Sm/

Building blocks: 0

e Additive secret shares of zero Z share; = 0

 APRFis used to agree in the same “a” per each round.

e Nextlemma is used to remove the error in a distributed way:

Lemma 1 (Lemma 1 [3]). Let plq,  « Ré_{\’v and y = x + e mod q for some

ec RE}V with | €|« < B < q/p. Then Pr (Ly]p # |z ], mod p) < —2””qNB.

TRJUMP=T 38
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Proposed solution: You can leave your hat on

* Next lemma is used to remove the error in a distributed way:

Lemma 1 (Lemma 1 [3]). Let plq, = « Ré_{v and y = x + e mod q for some
ec RE}V with |€[|oc < B < q/p. Then Pr ( |y], # =], mod p) < —2””qNB.

* | 't can be used to show that [b], = |as + e] +m # |as], +m with at most

probability Pr(Ev)

* By bounding Pr(Ev) <27":

,‘i

2
q>4 n NAggRounds NCtxts PerRound * P ° L Blnlt

TRUMP=T
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Proposed solution: You can leave your hat on

* Next lemma is used to remove the error in a distributed way:
Lemma 1 (Lemma 1 [3]). Let plq,  + sz\" and y = x + e mod q for some

e € RY with |le] < B < q/p. Then Pr (Ly]p # |], mod p) < —2””;\[3.

* It can be used to show that [b], = |as + ] +m # |as], +m with at most
probability Pr(Ev)

* By bounding Pr(Ev) <27":

TRUMP=T
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What’s under the clothes

Some nice surprises

41
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Dishonest Data Owners

PK = Enc(0) ||

_______________________

PK = Enc(0) ||
N =

__________________________________________

........................................

Aggregation
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Some nice properties

e Limiting ciphertexts’ malleability

o _n

By assuming the Common Reference String (CRS) model, a different “a” term is

fixed per each aggregation round.

e Upgrade to malicious aggregators

o The Aggregator can only apply additive transformations without being detected.
o  An extra condition check can be embedded into ciphertexts to verify honest
behavior.

e Stronger semi-honest DOs:

o As thereis no public key, DOs cannot generate encryptions of the global secret
key.

TRUMP=T
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Some nice properties

e Limiting ciphertexts’ malleability

o _n

o By assuming the Common Reference String (CRS) model, a different “a” termis
fixed per each aggregation round.

e Upgrade to malicious aggregators

The Aggregator can only apply additive transformations without being detected.

An extra condition check can be embedded into ciphertexts to verify honest
behavior.

e Stronger semi-honest DOs:

o As thereis no public key, DOs cannot generate encryptions of the global secret
key.
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Some nice properties

e Limiting ciphertexts’ malleability

o _n

o By assuming the Common Reference String (CRS) model, a different “a” termis
fixed per each aggregation round.

e Upgrade to malicious aggregators
o The Aggregator can only apply additive transformations without being detected.

o  An extra condition check can be embedded into ciphertexts to verify honest
behavior.

e Stronger semi-honest DOs:

As there is no public key, DOs cannot generate encryptions of the global secret
key.
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An upgrade to malicious aggregators

e An extra condition check can be embedded into Secret-Key ciphertexts (e.g., 6 - m
with 6 unknown to aggregator). This verifies the honest behavior during aggregation.

I — i
=t

000 J ;
Enc(d-my) |i

& | i
1 .
-\ .'
ﬁ ___________________ a _______________ -
: ™

>
- & ) | oo || ) | S e
>

’a ﬁ v\.
! N ~
000 | . -

800 | | Enc(ms) Enc(d - my)

1
. - N b; l
= = ) : K
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Aggregation
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Some outfit comparisons

Comparing with others HE-based solutions
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o 4

. Comparison with other solutions

aggregated model

M: Model Size
i f
bitaiirold Ours [2] [5] [3] [4] [6]
M = constant - n
Agg. Comp. Cost O(MN) add. O(MN) mult. O(MN) add. O(MN) add. O(MN?)
DO Comp. Cost LWE: O(Mn) mult. O(M) exp. O(M logM) O(M logM) O(MN + N?)
RLWE: O(M logM) mult. mult. mult.
Total Com. Cost O(MN) O(MN) O(MN) O(MN) O(MN + N?)
Multiple Keys Q (N
Passive parties
Malicious Agg. Verify Agg. Verify Agg. O S only DOs input
privacy if T > N/2
Assumptions LWE/RLWE Paillier RLWE RLWE T non-colluding
DOs
Flexible Dec. only DOs contributing to ) O S required T out of N

DOs

TQUn’]Dﬂ'
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Conclusions
When you go to the beach, all you truly need is a bathing suit!

TQUn’]Dﬂ'
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Conclusions

e We tailor and optimize HE constructions for secure average aggregation.

e Multi-key homomorphic encryption mitigates collusion attacks between
aggregator and data owners.

e We propose a lightweight communication-efficient multi-key approach suitable
for the Federated Averaging rule.

o Communication cost per party is reduced approximately

m by a half with RLWE.
m from quadratic to linear in terms of lattice dimension if considering LWE.

o Easy to update to be secure against malicious aggregators.

TUMPT 50
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Bonus slides: An example of a simple BGV-type HE

e (Consider two epgcryntions:
Enc(ml) = (CLl, bl = —a18 +teg + ml)

Enc(ms) = (as,by = —ass + tes + my)

* Decryption:
(by + a1s mod 1 + 2") mod g = my + tey

e Homomorphic Addition:
Enc(mi + ma) = (Gadd = @1 + a2, badd = b1 + b2)
Enc(my + m2) = (Gadd, badd = —Qadds + t(e1 + e2) + (M1 + ma2))
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Bonus slides: An example of a simple BGV-type HE

Consider two encryptions:
Enc(ml) = (CLl, bl = —a1S + t@l —+ ml)

Enc(mg) = (CLQ, b2 = —Q9S + t@g -+ mg)
Decryption:

(by + a1s mod 1 + 2") mod g = my + tey
Homomorphic Multiplication:

« I It is slightly more complicated

Enc(mlmg) = (afmulta brmult s Cmu|t) = (a1a2, a1by + agby, 5152)

 The number of polynomial elements increases. Decryption is now:

(Cmutt + bmuits + @muies® mod 1+ 2™) mod g = myma + temun
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Bonus slides: An example of a simple BGV-type HE

e Consider two encryptions:
Enc(ml) = (al, bl = —a18 +teg + ml)
Enc(mg) = (CLQ, b2 = —Q9S + t@g -+ mg)

* Decryption:
(by + a1s mod 1 + 2") mod g = my + tey

e Homomorphic Multiplication:
« Itis slightly more complicated

Enc(mlmg) = (afmulta brmult s Cmu|t) = (a1a2, a1by + agby, 5152)

« | The number of polynomial elements increases. Decryption is now:
(Cmutt + bmuteS + Amuies” mod 1 + 2™) mod ¢ = mima + temui
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Bonus slides: An example of a simple BGV-type HE

* Homomorphic Multiplication:

« ltis slightly more complicated
Enc(mlmg) — (afmulta Dmult Cmu|t) = (a1a2, a1by + asby, 5152)

 The number of polynomial elements increases. Decryption is now:

(Cmutt + bmuits + @muies® mod 1+ 2™) mod g = myma + temun

« | “Relinearization step” is used to relinearize the “decryption circuit”:
Re“nearization (amultp bmult; Cmult) — (a/relim brelin)

(brelin + ArelinS mod 1 + Zn) mod q = 1mi1msy + t(emult + 6relin)
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Proposed solution: some extra details

The distributed decryption introduces an extra error component

Edistributed = |05 | p Z Las;] p

PI’(EV) < 2-n- NAggRounds ’ NCtxts.PerRound : p' : BAgg
- q

2 2 2 K
q Z 4-n”- NAggRounds : NCtxts.PerRound *p- L= - Blnit -2

Input per DO Decryption share per DO| Aggregator output | Decrypted result

NModelParam - 1082 4|  NModelParam - 1082 P’ | NModelParam * 1082 P’ | NModelParam * 10g2 P

Table 2. Communication costs per party in each aggregation round.
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Proposed solution: some extra details

* The distributed decryption introduces an extra error component
Edistributed = |15 p E Lasi—‘p

i
* |t can be removed with an additional rounding phase (g > p’ > p)

PI’(EV) < 2-n- NAggRounds ’ NCtxts.PerRound : p' : BAgg
- q

2 2 2 K
q Z 4-n”- NAggRounds : NCtxts.PerRound *p- L= - Blnit -2

Input per DO Decryption share per DO| Aggregator output | Decrypted result

NModelParam - 1082 4|  NModelParam - 1082 P’ | NModelParam * 1082 P’ | NModelParam * 10g2 P

Table 2. Communication costs per party in each aggregation round.
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