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Introduction
A little bit about Federated Learning and its problems
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Example scenario for Federated Learning
● FL allows the training of ML models without explicit sharing of training data.

● A central server (Aggregator) aggregates the local training updates from Data Owners (DOs).

● Cross-silo FL: a model is built from the training sets of a reduced number of servers.
○ They are always available and computationally powerful.
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A toy example and some privacy risks
● Initially proposed to avoid moving the training data out

○ reducing communication costs and “ensuring data privacy.”

● Some example attacks:

○ Is      in the database of a particular hospital?
○ Can we reconstruct attributes of the people in the database?

The aggregator is the most dangerous party! 
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A toy example and some privacy risks

This figure has been made using images from www.flaticon.com and www.stockio.com.

Training Data

belongs to the training data?
First Local Model

Alice

Private Data

Patient Age Weight

María 43 56
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Alice 46 73
Can we infer the Age and 

Weight of Alice?

● Some example attacks:

6



7

MEMBERSHIP INFERENCE: TELL ME WHO YOU GO WITH, AND 
I’LL TELL YOU WHO YOU ARE

● Membership inference:
○ General cancer risk       : 350 per 100000 people (aged 45 - 49)

https://www.cancer.gov/about-cancer/causes-prevention/risk/age
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MEMBERSHIP INFERENCE: TELL ME WHO YOU GO WITH, AND 
I’LL TELL YOU WHO YOU ARE

● Membership inference:
○ General cancer risk       : 350 per 100000 people (aged 45 - 49)
○ “Cancer risk” knowing that      is contained in the training data: 1 per 2 people

Private Data

ML model

This figure has been made using images from www.flaticon.com and www.stockio.com.

https://www.cancer.gov/about-cancer/causes-prevention/risk/age

Training Data

belongs to the training data?

Balanced training data



Some basics of  HE
RLWE and toy examples with Homomorphic Encryption (HE)
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(Polynomial) Ring Learning with Errors
• (P)RLWE problem: RLWE relies upon the computational 

indistinguishability between the following pairs of samples:
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How difficult is to distinguish highly depends on the length of the polynomials.



PLWE/RLWE: BGV-type example for HE
• (P)RLWE problem: RLWE relies upon the computational 

indistinguishability between the following pairs of samples:
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• Consider two encryptions:

• Decryption:

• Homomorphic Addition:

An example of  a simple BGV-type HE
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• Consider two encryptions:

• Decryption:

• Homomorphic Addition:

• Homomorphic Multiplication:
• It is slightly more complicated

An example of  a simple BGV-type HE
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HE for Secure Aggregation
Achieving protection against the aggregator
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Secure Aggregation: 
Protection against the aggregator
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● Homomorphic Encryption (HE) counters with the confidentiality threats from the Aggregator.



Secure Aggregation: 
Protection against the aggregator
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● Homomorphic Encryption (HE) counters with the confidentiality threats from the Aggregator.

○ It seems to be a perfect fit for secure aggregation.
○ It respects the communication flow of unprotected FL.



Secure Aggregation: 
Protection against the aggregator

● Single-key HE imposes the need of
○ a trusted decryptor.
○ non-colluding assumption among Aggregator and decryptor.
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Single-key HE vs Multi-key HE
● Our scenario requires to incorporate multiple keys into HE.

○ Prevents decryption without permission of other participants.

Single key Multiple keys
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(S)HE looks nice, but maybe too many clothes for FL
Our motivation:
● Many works address the problem of secure aggregation in FL.
● To the best of our knowledge, HE has not been yet fully 

optimized for this setting.

Our objective: 
● Tailor and optimize HE constructions for secure average 

aggregation.

We propose: 
● A lightweight communication-efficient multi-key approach 

suitable for the Federated Averaging rule.
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Undressing HE:
a talk with “streaptease”
This is not what it seems
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• Public key generation:

• Encryption:
• We encrypt a message 

• Multiple keys with an (L-out-of-L) threshold variant of BFV:

First outfit: Using a BFV-type encryption
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• The public key is not needed:
• Each Data Owner can encrypt with its own secret key.

• Encrypted updates can be aggregated on the fly:
• By sharing the same “a”, then “b” components are directly aggregated.

• There is no need to send “a”.

Take it off  all
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• The public key is not needed:
• Each Data Owner can encrypt with its own secret key.

• Encrypted updates can be aggregated on the fly:
• By sharing the same “a”, then “b” components are directly aggregated.

• There is no need to send “a”.

Take it off  all

To have distributed decryption, each DO has to send

but it also decrypts the input ciphertext!
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Proposed solution
Take it off all, but carefully
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Masking the secret keys:  

Building blocks:

• Additive secret shares of zero 

• A PRF is used to agree in the same “a” per each round.

• Next lemma is used to remove the error in a distributed way:

Proposed solution: You can leave your hat on…
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• Next lemma is used to remove the error in a distributed way:

• It can be used to show that with at most 
probability

• By bounding      :

Proposed solution: You can leave your hat on
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What’s under the clothes
Some nice surprises
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Dishonest Data Owners
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Some nice properties

● LImiting ciphertexts’ malleability

○ By assuming the Common Reference String (CRS) model, a different “a” term is 
fixed per each aggregation round.

● Upgrade to malicious aggregators

○ The Aggregator can only apply additive transformations without being detected.
○ An extra condition check can be embedded into ciphertexts to verify honest 

behavior.

● Stronger semi-honest DOs:

○ As there is no public key, DOs cannot generate encryptions of the global secret 
key.
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An upgrade to malicious aggregators
• An extra condition check can be embedded into Secret-Key ciphertexts (e.g., δ · m 

with δ unknown to aggregator). This verifies the honest behavior during aggregation.
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Some outfit comparisons
Comparing with others HE-based solutions
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Comparison with other solutions
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Conclusions
When you go to the beach, all you truly need is a bathing suit!
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Conclusions

● We tailor and optimize HE constructions for secure average aggregation.

● Multi-key homomorphic encryption mitigates collusion attacks between 
aggregator and data owners.

● We propose a lightweight communication-efficient multi-key approach suitable 
for the Federated Averaging rule.

○ Communication cost per party is reduced approximately

■ by a half with RLWE.
■ from quadratic to linear in terms of lattice dimension if considering LWE.

○ Easy to update to be secure against malicious aggregators.
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Thanks for your attention!
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• Homomorphic Multiplication:

• It is slightly more complicated

• The number of polynomial elements increases. Decryption is now:

• “Relinearization step” is used to relinearize the “decryption circuit”:

Bonus slides: An example of  a simple BGV-type HE
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Proposed solution: some extra details
• The distributed decryption introduces an extra error component

• It can be removed with an additional rounding phase (q > p’ > p)

59



Proposed solution: some extra details
• The distributed decryption introduces an extra error component

• It can be removed with an additional rounding phase (q > p’ > p)

60



Proposed solution: some extra details
• The distributed decryption introduces an extra error component

• It can be removed with an additional rounding phase (q > p’ > p)

61


