
1 © R. Guerraoui

Implementing Consensus
with Timing Assumptions

R. Guerraoui
Distributed Programming Laboratory

2

A Modular Approach
We implement Wait-free Consensus (Consensus)

through:
 Lock-free Consensus (L-Consensus)

 and
 Registers

We implement L-Consensus through
 Obstruction-free Consensus (O-Consensus)

 and
 <>Leader (encapsulating timing assumptions and

sometimes denoted Ω)

3

A Modular Approach

Consensus

L-Consensus

O-Consensus <>Leader

<>Synchrony

Registers

4

Consensus

Wait-Free-Termination: If a correct process proposes, it
eventually decides

Agreement: No two processes decide differently

Validity: Any value decided must have been proposed

5

L-Consensus

Lock-Free-Termination: If a correct process proposes,
at least one correct process eventually decides

Agreement: No two processes decide differently

Validity: Any value decided must have been proposed

6

O-Consensus
Obstruction-Free-Termination: If a correct process

proposes and eventually executes alone, the process
eventually decides

Agreement: No two processes decide differently

Validity: Any value decided must have been proposed

7

Example 1

P2

P1

prop(5) -> 5

prop(0) ->

P3
prop(8) ->

8

Example 2

P2

P1

prop(5) -> 8

P3

prop(0) ->

prop(8) ->

9

O-Consensus Algorithm (idea)

!   A process that is eventually « left alone /
scheduled » to execute steps, eventually decides

!   Several processes might keep trying to
concurrently decide until some (unknown) time:
agreement (and validity) should be ensured
during this preliminary period

10

O-Consensus Algorithm
!   (1) pi announces its timestamp

!   (2) pi selects the value with the highest timestamp

!   (3) pi announces the value with its timestamp

!   (4) if pi’s timestamp is the highest, pi decides

11

O-Consensus Algorithm (data)
!   Each process pi maintains a timestamp ts,

initialized to i and incremented by n
!   The processes share an array of register pairs
Reg[1,..,n]; each element of the array contains
two registers:
!   Reg[i].T contains a timestamp (init to 0)
!   Reg[i].V contains a pair (value,timestamp) (init

to (⊥,0))

12

O-Consensus Algorithm
(functions)

!   To simplify the presentation, we assume two
functions applied to Reg[1,..,N]
!  highestTsp() returns the highest

timestamp among all elements Reg[1].T,
Reg[2].T, .., Reg[N].T

!  highestTspValue() returns the value with
the highest timestamp among all elements
Reg[1].V, Reg[2].V, .., Reg[N].V

13

O-Consensus Algorithm

propose(v):
!   while(true)

!   Reg[i].T.write(ts);
!   val := Reg[1,..,n].highestTspValue();
!   if val = ⊥ then val := v;
!   Reg[i].V.write(val,ts);
!   if ts = Reg[1,..,n].highestTsp() then
!   return(val)
!   ts := ts + n

14

O-Consensus Algorithm

!   (1) pi announces its timestamp
!   (2) pi selects the value with the highest

timestamp (or its own if there is none)
!   (3) pi announces the value with its

timestamp
!   (4) if pi’s timestamp is the highest, then pi

decides (i.e., pi knows that any process
that executes line 2 will select pi’s value)

15

O-Consensus Algorithm

propose(v):
!   while(true)

!   (1) Reg[i].T.write(ts);
!   (2) val := Reg[1,..,n].highestTspValue();
!   if val = ⊥ then val := v;
!   (3) Reg[i].V.write(val,ts);
!   (4) if ts = Reg[1,..,n].highestTsp() then
!   return(val)
!   ts := ts + n

16

A Modular Approach

Consensus

L-Consensus

O-Consensus <>Leader

<>Synchrony

Registers

17

L-Consensus
!  We implement L-Consensus using
(a)  <>leader (leader()) and
(b)  the O-Consensus algorithm

!  The idea is to use <>leader to make
sure that, eventually, one process keeps
executing steps alone, until it decides

18

<> Leader

!  One operation leader() which does not take any
input parameter and returns, as an output
parameter, a boolean

!  A process considers itself leader if the boolean is
true

" Property: If a correct process invokes leader,
then the invocation returns and eventually,
some correct process is permanently the only
leader

19

Example

P2

P1
leader() -> true

P3

leader() -> true

leader() -> false

leader() -> false

leader() -> false

leader() -> true

20

L-Consensus

!   propose(v): while(true)
!   if leader() then

!   Reg[i].T.write(ts);
!   val := Reg[1,..,n].highestTspValue();
!   if val = ⊥ then val := v;
!   Reg[i].V.write(val,ts);
!   if ts = Reg[1,..,n].highestTsp()
!   then return(val)
!   ts := ts + n

21

A Modular Approach

Consensus

L-Consensus

O-Consensus <>Leader

<>Synchrony

Registers

22

From L-Consensus to
Consensus (helping)

•  Every process that decides writes its value in a
register Dec (init to ⊥)

•  Every process periodically seeks for a value in Dec

23

Consensus
propose(v)
!   while (Dec.read() = ⊥)
!   if leader() then

!  Reg[i].T.write(ts);
!  val := Reg[1,..,n].highestTspValue();
!   if val = ⊥ then val := p;
!  Reg[i].V.write(val,ts);
!   if ts = Reg[1,..,n].highestTsp()
!   then Dec.write(val)
!  ts := ts + n;

return(Dec.read())

24

<> Leader

!  One operation leader() which does not take any
input parameter and returns, as an output
parameter, a boolean

!  A process considers itself leader if the boolean is
true
" Properties: (a) If a correct process invokes

leader(), then the invocation returns and (b) if a
correct process keeps invoking leader(), then
eventually, some correct process is
permanently the only leader

25

<>Leader: Algorithm

!  We assume that the system is <>synchronous
"  There is a time after which there is a lower and an

upper bound on the delay for a process to execute a
local action, a read or a write in shared memory

NB. The time after which the system becomes
synchronous is called the global stabilization time
(GST) and is unknown to the processes

!  This model captures the practical observation that
concurrent systems are usually synchronous and
sometimes asynchronous

26

<>Leader: Algorithm
(shared variables)

!  Every process pi elects (stores in a local variable
leader) the process with the lowest identity that pi
considers as non-crashed:
 NB. if pi elects pj, then i = j or j < i

!  A process pi that considers itself leader keeps
incrementing Reg[i] ; pi claims leadership

!  NB. Eventually, only the leader increments Reg[]

27

<>Leader: Algorithm
(local variables)

!  Every process periodically increments local
variables clock and check, as well as a local
variable delay whenever its leader changes

!  Process pi maintains lasti[j] to record the last
value of Reg[j] pi has read (pi can hence know
whether pj has progressed)

28

<>Leader: Algorithm
(variables)

!  The next leader is the one with the smallest id
that makes some progress; if no such process pj
such that j<i exists, then pi elects itself (noLeader
is true)

29

<>Leader: Algorithm
leader(): return(leader)

!  leader init to self
!  check and delay init to 1
!  clock, lasti[j] and Reg[j] init to 0;

!  Task:
!  while(true) do

" If (leader=self) then
"  Reg[i].write(Reg[i].read()+1);
" clock := clock + 1;
"  if(clock = check) then
"  elect();

30

<>Leader: Algorithm (cont’d)

elect():
!  noLeader := true;
!  for j = 1 to (i-1) do

"  if (Reg[j].read() > last[j]) then
"  last[j] := Reg[j].read();
"  if(leader ≠ pj) then delay:=delay + 2;
"  check := check + delay;
"  leader:= pj;
"  noLeader := false;
"  break (for);

!  if (noLeader) then leader := self;

31

Consensus = Registers + <> Leader
!  <>Leader has one operation leader() which does

not take any input parameter and returns, as an
output parameter, a boolean (a process considers
itself leader if the boolean is true)
" Property: If a correct process invokes leader, then the

invocation returns and eventually, some correct
process is permanently the only leader

!  <>Leader encapsulates the following synchrony
assumption: there is a time after which a lower
and an upper bound hold on the time it takes for
every process to execute a step (eventual
synchrony)

32

A Modular Approach

Consensus

L-Consensus

O-Consensus <>Leader

<>Synchrony

Registers

