Concurrent Algorithms
(Overview)

Prof R. Guerraoui
Distributed Programming Laboratory
In short

This course is about the principles of concurrent computing
Today

- Logistics
- Motivation
- Content
WARNING

- This course is different from the course: Distributed Algorithms
- shared memory vs message passing
- It does make a lot of sense to take both
This course

- Theoretical but no specific theoretical background is required

- Exercises throughout the semester

- Mid term (bonus) + Final exam
New York Times, 8 May 2004: Major chip manufacturers announced what is perceived as a major paradigm shift in computing:

Multiprocessors vs faster processors
Intel ... [has] decided to focus its development efforts on «dual core» processors ... with two engines instead of one, allowing for greater efficiency because the processor workload is essentially shared.
Multicores *are almost everywhere*

- **Dual-core** commonplace in laptops
- **Quad-core** in desktops
- **Dual quad-core** in servers
- All major chip manufacturers produce multicore CPUs
 - **SUN Niagara** (8 cores, 32 threads)
 - **Intel Xeon** (4 cores)
 - **AMD Opteron** (4 cores)
Multicores are almost everywhere

- Quad-core in laptops
- Octa-core in desktops
- 2*12 cores in servers
- All major chip manufacturers produce multicore CPUs
 - Oracle Sparc (32 cores, 256 threads)
 - Intel Xeon (12-16 cores)
 - AMD Opteron (12-16 cores)
AMD Opteron (4 cores)
SUN’s Niagara CPU2 (8 cores)
Multiprocessors

- Multiple hardware processors: each executes a series of processes (software constructs) modeling sequential programs

- Multicore architecture: multiple processors are placed on the same chip
Principles of an architecture

- Two fundamental components that *fall apart*: **processors** and **memory**

- The Interconnect links the processors with the memory:
 - **SMP** (symmetric): bus (a tiny Ethernet)
 - **NUMA** (network): point-to-point network
Cycles

- The basic unit of time is the cycle: time to execute an instruction

- This changes with technology but the relative cost of instructions (local vs memory) does not
Simple view

Processor + Cache

Bus

Memory
Hardware synchronization objects

- The basic unit of communication is the *read* and *write* to the memory (through the cache)

- More sophisticated objects are typically provided and, as we will see, necessary: C&S, T&S, LL/SC
The free ride is over

- Cannot rely on CPUs getting faster in every generation
- Utilizing more than one CPU core requires concurrency
The free ride is over

One of the biggest software challenges: exploiting concurrency
- Every programmer will have to deal with it
- Concurrent programming is hard to get right
Speed will be achieved by having several processors work on independent parts of a task

But

the processors would occasionally need to pause and synchronize
Concurrent processes

Shared object
Counter

public class Counter

private int c = 0;

public long getAndIncrement()
{
 return c++;
}

Locking (mutual exclusion)

Locked object
Implicit use of a lock

```java
public class SynchronizedCounter {
    private int c = 0;
    public synchronized void increment() {
        c++;
    }
    public synchronized void getAndIncrement() {
        return c++;
    }
    public synchronized int value() {
        return c;
    }
}
```
Locking with compare\&swap()

- A **Compare&Swap** object maintains a value x, init to \perp, and y;

- It provides one operation: $c&s(old,new)$;

✓ Sequential spec:
 * $c&s(old,new)$

 $\{ y := x; \text{ if } x = old \text{ then } x := new; \text{ return}(y) \}$
Locking with compare\&swap()

lock() {
 repeat until
 unlocked = this.c\&s(unlocked,locked)
}

unlock() {
 this.c\&s(locked,unlocked)
}
Locking with test&set()

- A **Test&Set** object maintains binary values \(x \), init to 0, and \(y \);

- It provides one operation: \(t&s() \)

 ✓ Sequential spec:
 ✓ \[
 t&s() \{ y := x; x: = 1; \text{return}(y); \}
 \]
Locking with test\&set()

lock() {
 repeat until (0 = this.t\&s());
}

unlock() {
 this.setState(0);
}
Locking with test&set()

lock() {
while (true) {
 repeat until (0 = this.getState());
 if 0 = (this.t&s()) return(true);
}
}

unlock() {
 this.setState(0);
}

Explicit use of a lock

Lock l = ...;
 l.lock();
try {
 // access the resource protected by this lock
} finally {
 l.unlock();
}
Locking (mutual exclusion)

- **Difficult:** 50% of the bugs reported in Java come from the mis-use of «synchronized»

- **Fragile:** a process holding a lock prevents all others from progressing

- **Slow:** the act of locking itself impacts performance
Locked object

One process at a time
Processes are asynchronous

- Page faults
- Pre-emption
- Failures
- Cache misses, ...
Processes are asynchronous

- A cache miss can delay a process by ten instructions
- A page fault by few millions
- An OS preemption by hundreds of millions...
Coarse grained locks => slow

Fine grained locks => errors
Double-ended queue
Processes are asynchronous

- Page faults, pre-emption, failures, cache misses, ...

- A process can be delayed by millions of instructions ...
Alternative to locking?
Wait-free atomic objects

Wait-freedom: every process that invokes an operation eventually returns from the invocation (robust ... unlike locking)

Atomicity: every operation appears to execute instantaneously (as if the object was locked...)

In short

This course shows how to

wait-free implement high-level

atomic objects out of primitive base objects
Concurrent processes

Shared object
Roadmap

Model
 Processes and objects
 Atomicity and wait-freedom

Examples

Content
Processes

- We assume a finite set of processes
- Processes are denoted by p_1, \ldots, p_N or p, q, r
- Processes have unique identities and know each other (unless explicitly stated otherwise)
Processes

Processes are *sequential* units of computations

Unless explicitly stated otherwise, we make no assumption on process (relative) speeds
Processes

p1

p2

p3
Processes

A process either executes the algorithm assigned to it or crashes.

A process that crashes does not recover (in the context of the considered computation).

A process that does not crash in a given execution (computation or run) is called correct (in that execution).
Processes

p1

p2

\text{crash}

p3
On objects and processes

Processes execute local computation or access shared objects through their operations.

Every operation is expected to return a reply.
Processes

p1

p2

p3

operation

operation

operation
On objects and processes

Sequentiality means here that, after invoking an operation op1 on some object O1, a process does not invoke a new operation (on the same or on some other object) until it receives the reply for op1.

Remark. Sometimes we talk about operations when we should be talking about operation invocations.
Processes

p1 operation

p2 operation

p3 operation
Atomicity

Every operation appears to execute at some indivisible point in time (called linearization point) between the invocation and reply time events.
Atomicity
Atomicity

operation

p1

operation

p2

operation

p3
Atomicity (the crash case)
Atomicity (the crash case)
Atomicity (the crash case)
Wait-freedom

Any correct process that invokes an operation eventually gets a reply, no matter what happens to the other processes (crash or very slow)
Wait-freedom

operation

p1

p2

p3
Wait-freedom

Wait-freedom conveys the robustness of the implementation

With a wait-free implementation, a process gets replies despite the crash of the n-1 other processes

Note that this precludes implementations based on locks (mutual exclusion)
Wait-freedom

\[\text{operation}\]

\[\text{p1}\]

\[\text{p2} \quad \times \quad \text{crash}\]

\[\text{p3} \quad \times \quad \text{crash}\]
Roadmap

- Model
 - Processes and objects
 - Atomicity and wait-freedom
- Examples
- Content
Motivation

Most synchronization primitives (problems) can be precisely expressed as atomic objects (implementations).

Studying how to ensure robust synchronization boils down to studying wait-free atomic object implementations.
Example 1

The reader/writer synchronization problem corresponds to the register object.

Basically, the processes need to read or write a shared data structure such that the value read by a process at a time t, is the last value written before t.
A register has two operations: read() and write()

We assume that a register contains an integer for presentation simplicity, i.e., the value stored in the register is an integer, denoted by x (initially 0)
Sequential specification

- `read()`
 - return(x)

- `write(v)`
 - x <- v;
 - return(ok)
Atomicity?

write(1) - ok

p1

p2

read() - 2

write(2) - ok

p3
Atomicity?

- write(1) - ok
- read() - 2
- write(2) - ok
Atomicity?

write(1) - ok

read() - 1

write(2) - ok
Atomicity?

write(1) - ok

p1

read() - 1

p2

write(2) - ok

p3
Atomicity?

write(1) - ok

read() - 1

read() - 1

p1

p2

p3
Atomicity?

- write(1) - ok
- read() - 1
- read() - 0
Atomicity?

- `write(1) - ok`
- `read() - 0`
- `read() - 0`
Atomicity?

write(1) - ok

read() - 0

read() - 0
Atomicity?

write(1) - ok

read() - 0

read() - 0
Atomicity?

write(1) - ok

read() - 1

read() - 0
Atomicity?

write(1) - ok

p1

read() - 1

p2

read() - 1

p3
Example 2

The producer/consumer synchronization problem corresponds to the *queue* object.

Producer processes create items that need to be used by consumer processes.

An item cannot be consumed by two processes and the first item produced is the first consumed.
Queue

A queue has two operations: enqueue() and dequeue()

We assume that a queue internally maintains a list x which exports operation appends() to put an item at the end of the list and remove() to remove an element from the head of the list.
Sequential specification

dequeue()
- if(x=0) then return(nil);
- else return(x.remove());

enqueue(v)
- x.append(v);
- return(ok)
Atomicity?

p1

\[\text{enq}(x) - \text{ok}\]

p2

\[\text{enq}(y) - \text{ok}\]
\[\text{deq}() - y\]

p3

\[\text{deq}() - x\]
Atomicity?

$p1$

$\text{enq}(x) \rightarrow \text{ok}$

$p2$

$\text{enq}(y) \rightarrow \text{ok}$

$p3$

$\text{deq}() \rightarrow \text{y}$

$\text{deq}() \rightarrow \text{x}$
Atomicity?

\[\text{enq}(x) \rightarrow \text{ok} \]

\[\text{deq}() \rightarrow y \]

\[\text{enq}(y) \rightarrow \text{ok} \]
Atomicity?

p1: \text{enq}(x) - \text{ok}

p2: \text{deq}() - x

p3: \text{enq}(y) - \text{ok}
Roadmap

Model

Processes and objects

Atomicity and wait-freedom

Examples

Content
Content

(1) Implementing *registers*
(2) The power & limitation of *registers*
(3) *Universal* objects & synchronization number
(4) The power of *time* & failure detection
(5) Tolerating *failure* prone objects
(6) *Anonymous* implementations
(7) *Transaction* memory
In short

This course shows how to wait-free implement high-level atomic objects out of basic objects

Remark. Unless explicitly stated otherwise, objects mean atomic objects and implementations are wait-free