
Concurrent Algorithms November 20, 2018

Solutions to Exercise 7

Problem 1.
Below are transactional memory executions. For each execution:

• Specify whether it is opaque or not.

• If it is not, suggest a modification to make it opaque.

• Specify an equivalent sequential execution of transactions.

Reminder: An execution is opaque if it is equivalent to some sequential execution in which every trans-
action, even aborted or unfinished, observes a consistent state of the memory. Transaction T in a sequential
execution observes a consistent state of the memory if for every transactional variable x every read op-
eration on x within the transaction returns: (I) the value written by the last write operation on x in the
transaction T, or (II) the value written by the last write operation on x within a committing transaction, if
there are no write operations on x in T, or (III) the initial value of x if there are no write operations on x
within the execution.

p1 T1

x.write(1) y.write(2)
commit

p2 T2
x.read→ 0 y.read→ 0

commit

Figure 1: Transactional execution 1.

p1 T1

x.write(1) y.write(2)
commit

p2 T2
x.read→ 0 y.read→ 0

commit

Figure 2: Transactional execution 2.

p1 T1

x.write(1) y.write(2)
commit

p2 T2
x.read→ 0 y.read→ 0

commit

Figure 3: Transactional execution 3.

p-1



p1 T1

x.write(1) y.write(2)
abort T2

x.read→ 0 y.write(2)
commit

p2 T3
x.read→ 1 y.read→ 2

abort

Figure 4: Transactional execution 4.

p1 T1
x.read→ 0 y.write(1)

commit

p2 T2
y.read→ 0 x.write(1)

commit

Figure 5: Transactional execution 5.

p1 T1
x.read→ 0 y.write(1)

abort

p2 T2
y.read→ 0 x.write(1)

commit

Figure 6: Transactional execution 6.

Solution

• Figure 1. Yes. An equivalent serial execution is T2 · T1.

• Figure 2. Yes. An equivalent serial execution is T2 · T1.

• Figure 3. Yes. An equivalent serial execution is T2 · T1.

• Figure 4. No. The execution is not opaque because T3 observes results of T1’s actions even though T1
is aborted. One way to make it opaque is to have the read operations in T3 return 0. In this case an
equivalent sequential execution is T1 · T3 · T2.

• Figure 5. No. The execution is not opaque because if T1 is serialized before T2, then T2 does not
observe the write to y; and if T2 is serialized before T1, then T1 does not observe the write to x.
One way to make the execution opaque is to abort one of the transactions. Another is to have read
operation in T1 return 1. In this case an equivalent serial execution is T2 · T1.

• Figure 6. Yes. An equivalent sequential execution is T1 · T2.

p-2



Problem 2.
Implement the following objects using transactional memory:

• A snapshot.

• A strong counter.

• A compare-and-swap that works on several locations in an array. It takes the indices of the locations,
expected old values and the new values as parameters. Only if all the locations in the array have the
expected values, it swaps them with the new ones.

p-3



Solution

To implement these objects using transactional memory, we only need to enclose their sequential specifica-
tion in an atomic block.

Snapshot:
uses: array[M]

upon Snapshot do
begintransaction;
for i = 1 to M do

ret[i]← array[i];

endtransaction;
return ret

Counter:
initially: count = 0

upon Inc do
begintransaction;
ret← count;
count← count + 1;
endtransaction;
return ret

CASN:
uses: array[M]

upon CASN(idx, oldv, newv) do
begintransaction;
L← length(idx);
for i = 1 to L do

if array[idx[i]] 6= oldv[i] then
endtransaction;
return array

for i = 1 to L do
array[idx[i]]← newv[i]

endtransaction;
return array

p-4


