
Last week More atomic primitives TP: my own (lightweight) mutex

CS-453 (project)

Atomic primitives

Sébastien Rouault

Distributed Computing Laboratory

October 01, 2019

1 / 9

Last week More atomic primitives TP: my own (lightweight) mutex

Last week
Original code

// Global var.

int a = 0;

int b = 0;

// Thread A

a = 1; // write
b = 1; // write

// Thread B

auto v = b; // read

if (v == 1) {

print(a, v); // read

// a = 1, v = 1 �X
// a = 1, v = 0 �
// a = 0, v = 1 �X
// a = 0, v = 0 �

}

2 / 9

Last week More atomic primitives TP: my own (lightweight) mutex

Last week
Corrected code

// Global var.

#include <atomic>

int a = 0;

std::atomic<int> b = 0;

// Thread A

a = 1; // write
b.store(1, release);

// Thread B

auto v = b.load(acquire);

if (v == 1) {

print(a, v); // read

// a = 1, v = 1 �X
// a = 1, v = 0 �
// a = 0, v = 1 �
// a = 0, v = 0 �

}

3 / 9

Last week More atomic primitives TP: my own (lightweight) mutex

More atomic primitives
Overview

Name C++ method(s)
Read/write load/store

Fetch–and–. . . fetch ...

Swap exchange

Compare–and–Swap compare exchange weak

compare exchange strong

Limitation of fetch-and-...

Integral and pointer types only (C11, C++11)

Floating (and more) types may be added (C++20)

4 / 9

Last week More atomic primitives TP: my own (lightweight) mutex

More atomic primitives
Fetch–and–. . .

// Pseudo C++17 code below

#include <atomic>

using namespace std;

using Order = memory order;

T atomic<T>::fetch add(T v, Order order = seq cst) {

atomic {

auto t = load(relaxed); // Fetch

atomic thread fence(order);

store(t + v, relaxed); // Add

return t;

}

}

5 / 9

Last week More atomic primitives TP: my own (lightweight) mutex

More atomic primitives
Swap

// Pseudo C++17 code below

#include <atomic>

using namespace std;

using Order = memory order;

T atomic<T>::exchange(T v, Order order = seq cst) {

atomic {

auto t = load(relaxed);

atomic thread fence(order);

store(v, relaxed); // Just overwrite

return t;

}

}

6 / 9

Last week More atomic primitives TP: my own (lightweight) mutex

More atomic primitives
Compare-and-Swap

// [...]

// Pseudo C++17 code below

bool atomic<T>::compare exchange strong (T& e, T v,

Order succ = seq cst, Order fail = success) {

atomic {

bool same = (load(relaxed) == e);

atomic thread fence(same ? succ : fail);

if (same)

store(v, relaxed);

else e = load(relaxed); // NB: e overwritten on failure

return same;

}

}

7 / 9

Last week More atomic primitives TP: my own (lightweight) mutex

More atomic primitives
Compare-and-Swap

// [...]

// Pseudo C++17 code below

bool atomic<T>::compare exchange weak (T& e, T v,

Order succ = seq cst, Order fail = success) {

atomic {

bool same = (load(relaxed) == e);

// weak: ‘same’ may spuriously be false

atomic thread fence(same ? succ : fail);

if (same)

store(v, relaxed);

else e = load(relaxed); // NB: e overwritten on failure

return same;

}

}

7 / 9

Last week More atomic primitives TP: my own (lightweight) mutex

TP: my own (lightweight) mutex
Setup

1. Checkout branch master from
https://github.com/LPD-EPFL/CS453-2019-project.git

2. Go to directory playground

3. Execute $ make run and you should see:

[...]

Hello from thread .../...

[...]

** Inconsistency detected (... != ...) **

4. Complete the 4 methods Lock::... in entrypoint.cpp ,
implementing your own lightweight mutex, then run again.

8 / 9

Last week More atomic primitives TP: my own (lightweight) mutex

TP: my own (lightweight) mutex
The Analogy of the Talking Stick

4 threads
shared

resource mutex

talking stick Speaking at the same
time is forbidden
Must acquire the
talking stick to speak
The other speakers wait
for the talking stick

Resources — 1st link discusses (many) solutions. . .

• Charles Bloom — Review of many mutex implementations

• Jeff Preshing — Locks aren’t slow, lock contention is

• Jeff Preshing — You can do any kind of atomic RMW ops.

9 / 9

https://cbloomrants.blogspot.com/2011/07/07-15-11-review-of-many-mutex.html
https://preshing.com/20111118/locks-arent-slow-lock-contention-is/
https://preshing.com/20150402/you-can-do-any-kind-of-atomic-read-modify-write-operation/

	Last week
	Summary

	More atomic primitives
	Atomic primitives

	TP: my own (lightweight) mutex
	My own mutex

