
Concurrent Algorithms December 21, 2020

Solutions to Exercise 11

Problem 1. Let P be the problem of implementing C&S using base C&S objects, one of which can be

non-responsive, and registers (non-faulty). Let Q be the problem of implementing consensus using registers

in a system of n > 1 processes, one of which can crash (we know this problem to be impossible). We perform

our proof by contradiction: assume there exists an algorithm A that solves P using k C&S objects, in a

system of n processes (one of which can crash). If we find an algorithm B that solves problem Q, using A

we have reached a contradiction.

From non-faulty C&S to consensus: We implement consensus in a system of N = max(k, n)

processes, one of which can crash. A process pi that proposes a value, writes the value in a register R[i] and

waits until a decided value is written in register D:

initially: D = ⊥, R[1, . . . , N ] = ⊥

upon proposei(v) do

R[i]← v

wait until D 6= ⊥
return D

Each of the n processes then runs the following task in parallel and uses the hypothetical correct C&S

object implemented using algorithm A.

parallel task Consi

wait until some value v 6= ⊥ is written in some register R[j]

use algorithm A to call CAS(⊥, v) on the non-faulty C&S object

D ← value returned by the CAS

From registers to non-responsive C&S: Each of n processes emulates one base C&S object. The

processes share a 2-dimensional array CS of registers. When process i wants to invoke the CAS operation

of C&S object x it invokes the following:

upon CASx(oldval,newval)i do

CS[x][i]← (invocation, oldval,newval)

wait until CS[x][i] = (response, retval)

return retval

Since one of the processes can fail, its corresponding C&S object becomes non-responsive. Each process

i reads invocations from locations CS[i][∗] and applies them:

p-1



parallel task Ci

initially: q = ⊥ (local variable)

while true do

for j ← 1 to n do

(type, oldval,newval)← CS[i][j]

if type = invocation then

if q = oldval then q ← newval

CS[i][j]← (response, q)

Problem 2. We use 2t+1 base registers, so that always majority is correct. Read/write from/to majority

of registers.

uses: R[1, . . . , 2t + 1] – SWMR registers t of which can be non-responsive

upon write1(v) do

ts← ts + 1

invoke write1(ts, v) on all R[1, . . . , 2t + 1]

wait for t + 1 responses

upon readi do

invoke readi(v) on all R[1, . . . , 2t + 1]

wait for t + 1 responses

return the value v with the highest timestamp ts

The presented algorithm implements a regular SWMR register. However, a regular register can be trans-

formed into an atomic one (see the lecture slides about register transformations).

p-2


