
Distributed Algorithms 2019/20
Practical Project

Implementation of Localized Causal Broadcast
Distributed Computing Lab – EPFL

September 23, 2019

1 Overview
The goal of this practical project is to implement the building blocks neces-
sary for implementing a decentralized system. To this end, some underlying
abstractions will be used:

1. Perfect Links,

2. Uniform Reliable Broadcast,

3. FIFO Broadcast (submission #1),

4. Localized Causal Broadcast (submission #2)
Various applications (e.g., a payment system) can be built upon these lower-level
abstractions. We will check your submissions (see Section 7) for correctness and
performance as part of the final evaluation (see Section 5).

The implementation must take into account that messages exchanged be-
tween processes may be dropped, delayed or reordered by the network. The
execution of processes may be paused for an arbitrary amount of time and re-
sumed later. Processes may also fail by crashing at arbitrary points of their
execution.

2 Technical specification
2.1 Processes
One process is represented by one Linux process. Process n is started by exe-
cuting

da_proc n membership [extra_params...]

where n ∈ {1, 2, 3, 4, 5, . . .} is the ID of the process and membership is the name
of the membership file. extra_params are extra parameters specific for each
application; we discuss these parameters in more detail later (Section 7).

1



The membership file describes the system membership, i.e., the identities of
processes that participate in the protocol. The first line of this file contains the
number n of processes in the system. Subsequently, each line of this file contains
one process identity per line. The remaining lines of this file are application-
dependent (may be empty), and we discuss this later in detail in Section 7.

A process identity consists of a numerical process identifier, the IP address
of the process and the port number on which the process listens to incoming
messages. The entries of each process identity are separated by at least one white
space character. The following is an example of the contents of a membership
file:

5
1 127.0.0.1 11001
2 127.0.0.1 11002
3 127.0.0.1 11003
4 127.0.0.1 11004
5 127.0.0.1 11005
(... application-dependent data ...)

A process performs all necessary initialization tasks on startup, but it does
not automatically start sending / broadcasting messages. This enables all pro-
cesses to start and initialize. A process only starts broadcasting messages after
receiving the USR2 signal.

A process that receives a TERM or INT signal must immediately stop its
execution with the exception of writing to an output log file (see Section 2.3).
In particular, it must not send or handle any received network packets. This is
used to simulate process crashes. You can assume that at most a minority (e.g.,
1 out of 3; 2 out of 5; 4 out of 10, ...) processes may crash in one execution.

2.2 Messages
Inter-process point-to-point messages (at the low level) must be carried exclu-
sively by UDP packets in their most basic form, not utilizing any additional
features (e.g. any form of feedback about packet delivery) provided by the
network stack, the operating system or external libraries. Everything must be
implemented on top of these low-level point to point messages.

The application messages (i.e. those broadcast by processes) are numbered
sequentially at each process, starting from 1. Thus, each process broadcasts
messages 1 to m. By default, the payload carried by an application message is
only the sequence number of that message.

2.3 Output format
The output of each process is a text file. For process n, the text file is named
da_proc_n.out and contains a log of events. Each event is represented by one
line of the output file, terminated by a Unix-style line break ('\n'). There are
two types of events to be logged:

• broadcast of application message, using the format
b seq_nr
where seq_nr is the sequence number of the message

2



• delivery of application message, using the format
d sender seq_nr
where sender is the number of the process that broadcast the message
and seq_nr is the sequence number of the message (as numbered by the
broadcasting process).

An example of the content of an output file:

b 1
b 2
b 3
d 2 1
d 4 2
b 4

Note: The most straight-forward way of logging the output is to append a
line to the output file on every broadcast or delivery event. However, this may
harm the performance of the application. You might consider more sophisticated
logging approaches. Also note that even a crashed process needs to output the
sequence of events that occurred before the crash. You can assume that a
process crash will be simulated only by the TERM or INT signals. Remember
that writing to files is the only action we allow a process to do after receiving a
TERM or INT signal.

3 Compilation
All submitted applications will be tested using Ubuntu 14.04 running on a 64-bit
architecture. The submission has to contain all sources of the application. All
submitted files are to be placed in one folder, such that executing make in that
folder produces all necessary executables (at least da_proc, which will be called
by the testing scripts). We expect all implementation to be in either C/C++
or Java.

You are strongly encouraged to test the compilation of your code in the
virtualbox VM (see https://dcl.epfl.ch/site/education/da). For validating your
submission, we will upload your submitted code to our test machine (simi-
lar to the VM) and only run the original (i.e., modifications are prohibited)
validate.sh (or validate_java.sh). This script executes make to obtain the
executable da_proc (or Da_proc.class). Any submissions that fail to pass this
test will be completely ignored!

4 Template
A simple C template is provided that shows a possible high-level structure of the
application. The file da_proc.c contains a simple code skeleton that may serve
as a starting point for developing the application. Along with validate.sh
and validate_java.sh (see Section 3 - Compilation) we provide a shell script
(test_performance) to give you an estimate of how performance will be tested.

3



5 Testing and grading
The submitted applications will be first tested for correctness under various
conditions (packet loss, reordering, delays, simulated asynchrony of processes,
crashes, etc...).

If they pass all correctness tests (i.e. if the resulting output logs are consis-
tent with the definition of the corresonding broadcast abstraction), they will be
tested for performance in terms of throughput, i.e. the total number of messages
delivered by all processes per second. When testing throughput, no artificial net-
work artifacts (such as packet loss or reordering) or process delays/crashes will
be simulated.

6 Cooperation
This project is meant to be completed in teams of 2 to 3 people. Please submit
your team preference (see https://dcl.epfl.ch/site/education/da).

Copying of other teams’ solutions is prohibited. You are free (and encour-
aged) to discuss the projects with other teams, but the submitted application
source code must be the exclusive work of your own team. Multiple copies of the
same code will be disregarded without investigating which is the “original” and
which is the “copy”. Note: code similarity tools will be used to check copying.

7 Submissions
This project comprises two submissions, i.e., concrete applications:

1. A runnable application implementing FIFO Broadcast, and

2. A runnable application implementing Localized Causal Broadcast.

Note that these submissions are incremental. This means that your work
towards the first application will help you in your work towards the second
application. We are only interested in the FIFO and Localized Causal broadcast
applications.

We define several details for each application below.

7.1 FIFO Broadcast application
• You must build this application on top of uniform reliable broadcast

(URB).

• The extra_params command-line argument for this application consists
of an integer m, which defines how many messages each process should
broadcast.

• We do not specify any application-dependent data at the end of the
membership file for this application.

4



7.2 Localized Causal Broadcast application
• The extra_params command-line argument for this application consists

of an integer m, which defines how many messages each process should
broadcast.

• The application-dependent data at the end of the membership file for this
application consists of n lines. Each line i corresponds to process i, and
such a line indicates the identities of other processes which can affect
process i. See the example below.

• The FIFO property still needs to be maintained by localized causal broad-
cast. That is, messages broadcast by the same process must not be deliv-
ered in a different order then they were broadcast.

• The output format for localized causal broadcast remains the same as
before, i.e., adhering to the description in Section 2.3.

Example of membership file:
5
1 127.0.0.1 11001
2 127.0.0.1 11002
3 127.0.0.1 11003
4 127.0.0.1 11004
5 127.0.0.1 11005
1 4 5
2 1
3 1 2
4
5 3 4

In this example we specify that process 1 is affected by messages broadcast
by processes 4 and 5. Similarly, we specify that process 2 is only affected by
process 1. Process 4 is not affected by any other processes. Process 5 is affected
by processes 3 and 4.

We say that a process x is affected by a process z if all the messages which
process z broadcasts and which process x delivers become dependencies for all
future messages broadcast by process x. We call these dependencies localized.
If a process is not affected by any other process, messages it broadcasts only
depend on its previously broadcast messages (due to the FIFO property).

Note: In the default causal broadcast application (this application will be
discussed in one of the classes) each process affects all processes. In this appli-
cation we can selectively define which process affects some other process.

5


