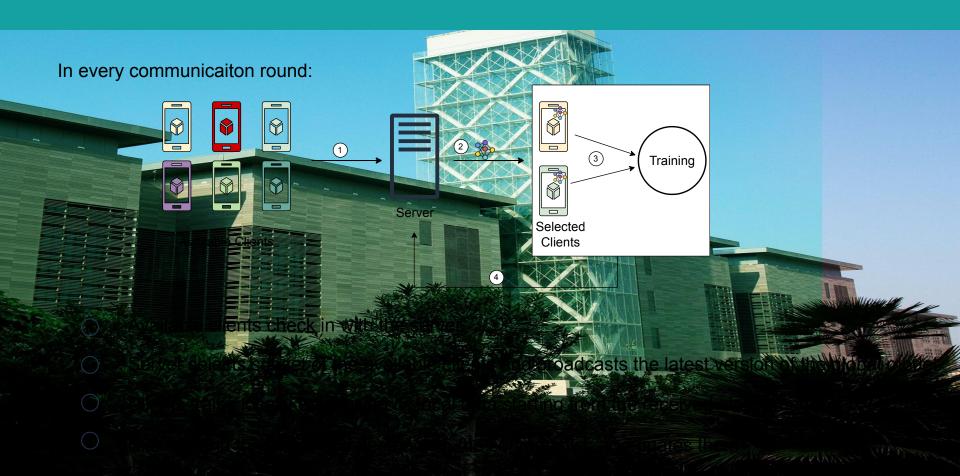
FilFL: Client Filtering for Optimized Client Participation in Federated Learning

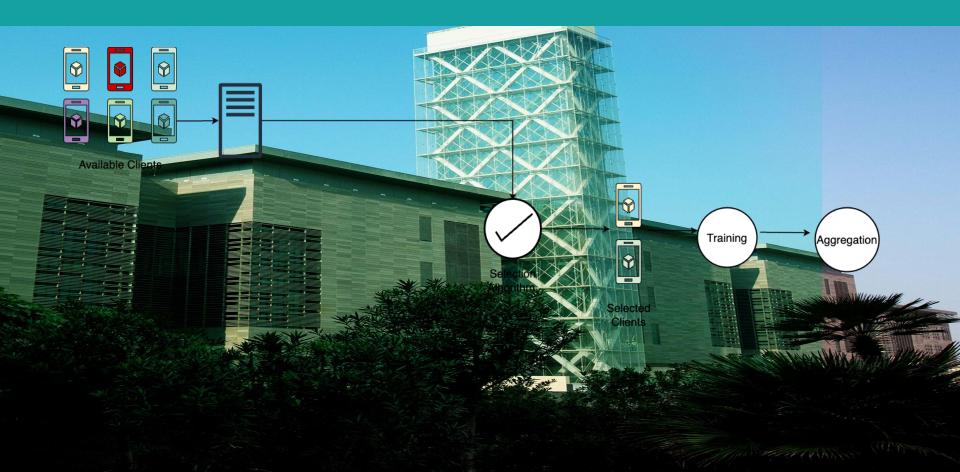
Salma Kharrat, Fares Fourati, Vaneet Aggarwal, M-Slim Alouini, Marco Canini

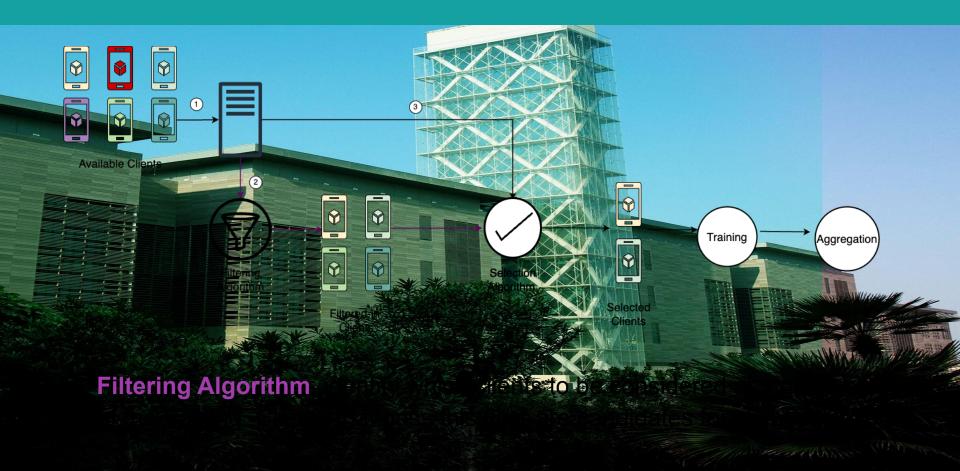
KAUST

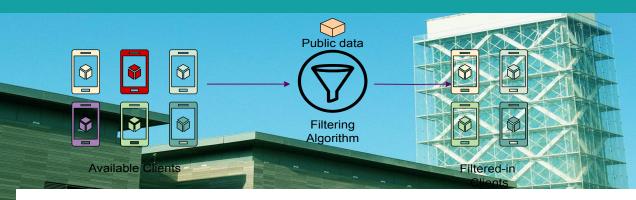
Federated Learning



Problem: Can we optimize client selection in FL



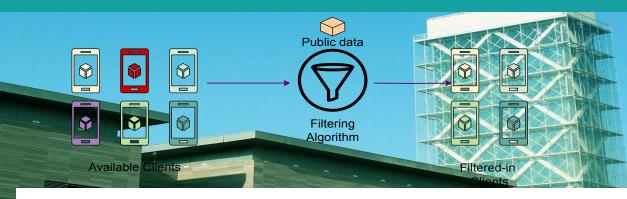




Filtering Objective. Our filtering objective is to find a subset of clients S_t^f that approximates a solution to the following combinatorial maximization problem:

$$\max_{S \in \mathcal{S}_t} \left\{ \mathcal{R}(S) \triangleq \mathcal{C} - F^{\mathcal{P}} \left(\frac{1}{|S|} \sum_{\mathbf{k} \in S} \mathbf{w_t^k} \right) \right\}$$
 (2)

where \mathcal{C} is a sufficiently large constant, such that $\mathcal{R}(\mathcal{S})$ is positive, \mathbf{w}_t^k is the weight of the k^{th} client in round t, and $F^{\mathcal{P}}(\mathbf{w}) \triangleq \frac{1}{m} \sum_{j=1}^{m} \ell(\mathbf{w}; x_j)$ as the loss on the server-held public dataset \mathcal{P} , which has m training data: x_1, x_2, \cdots, x_m .



Solving this problem exactly requires exponential queries to the objective function!

Filtering Objective. Our filtering objective is to find a subset of clients S_t^f that approximates a solution to the following combinatorial maximization problem:

$$\max_{S \in \mathcal{S}_t} \left\{ \mathcal{R}(S) \triangleq \mathcal{C} - F^{\mathcal{P}} \left(\frac{1}{|S|} \sum_{\mathbf{k} \in S} \mathbf{w_t^k} \right) \right\}$$
 (2)

where \mathcal{C} is a sufficiently large constant, such that $\mathcal{R}(\mathcal{S})$ is positive, \mathbf{w}_t^k is the weight of the k^{th} client in round t, and $F^{\mathcal{P}}(\mathbf{w}) \triangleq \frac{1}{m} \sum_{j=1}^{m} \ell(\mathbf{w}; x_j)$ as the loss on the server-held public dataset \mathcal{P} , which has m training data: x_1, x_2, \dots, x_m .

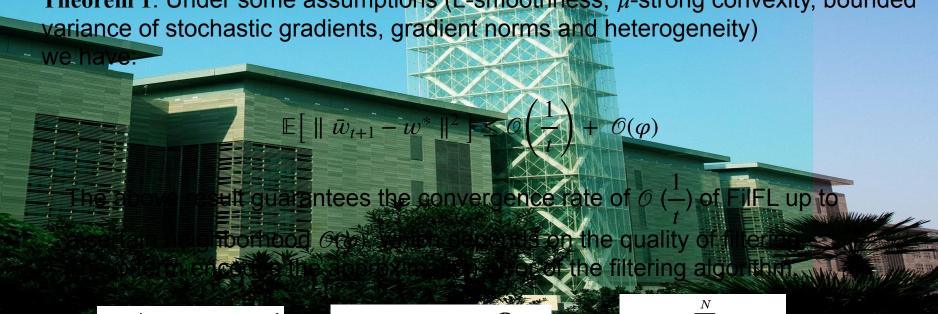
Filtering Objective. Our filtering objective is to find a subset of clients S_t^f that approximates a solution to the following combinatorial maximization problem:

$$\max_{S \in \mathcal{S}_t} \left\{ \mathcal{R}(S) \triangleq \mathcal{C} - F^{\mathcal{P}} \left(\frac{1}{|S|} \sum_{\mathbf{k} \in S} \mathbf{w_t^k} \right) \right\}$$
 (2)

where \mathcal{C} is a sufficiently large constant, such that $\mathcal{R}(\mathcal{S})$ is positive, \mathbf{w}_t^k is the weight of the k^{th} client in round t, and $F^{\mathcal{P}}(\mathbf{w}) \triangleq \frac{1}{m} \sum_{j=1}^{m} \ell(\mathbf{w}; x_j)$ as the loss on the server-held public dataset \mathcal{P} , which has m training data: x_1, x_2, \dots, x_m .

Theoretical guarantees

Theorem 1. Under some assumptions (L-smoothness, μ -strong convexity, bounded variance of stochastic gradients, gradient norms and heterogeneity)

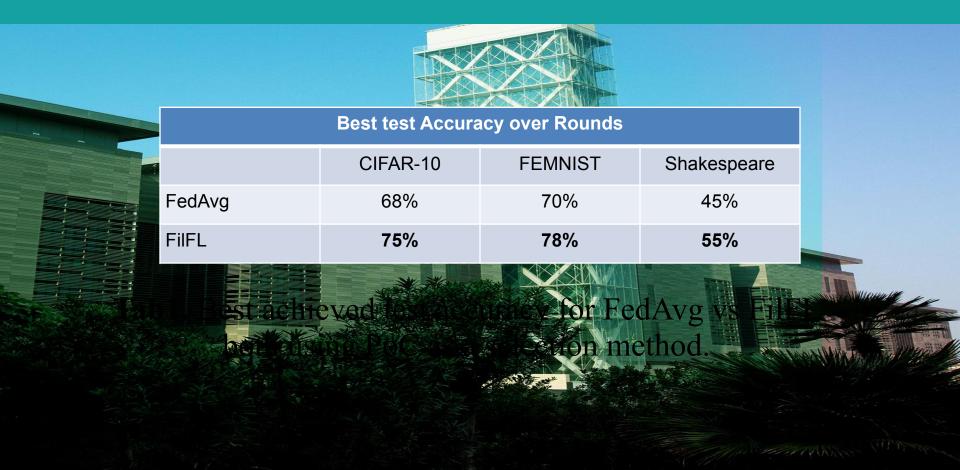


$$\bar{\mathbf{w}}_t \triangleq \sum_{k \in [N]} p_k \mathbf{w}_t^k$$

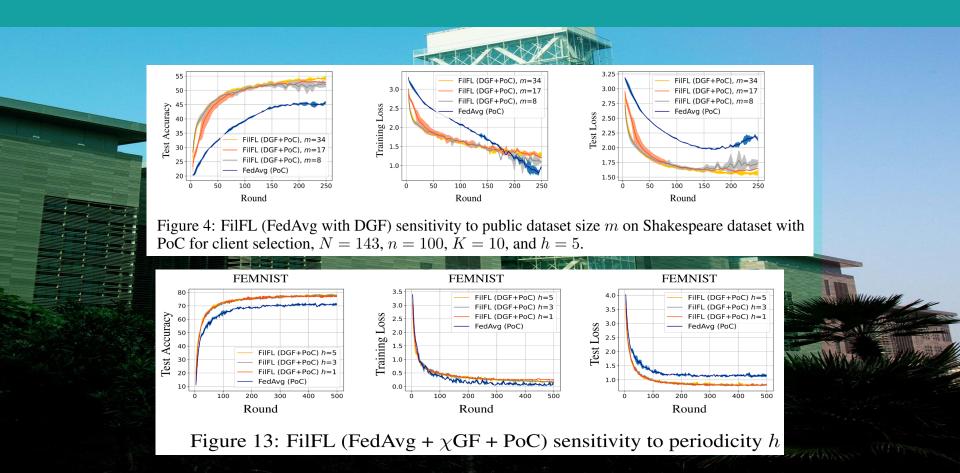
$$\mathbf{w}^* \in \operatorname{arg\,min}_{\mathbf{w}} F^{\mathcal{D}}(\mathbf{w})$$

$$F^{\mathcal{D}}(\mathbf{w}) riangleq \sum_{k=1}^N p_k F_k(\mathbf{w})$$

Client Filtering enhances FL algorithms



FiIFL sensitivity to Hyperparameters



Filtering Behavior

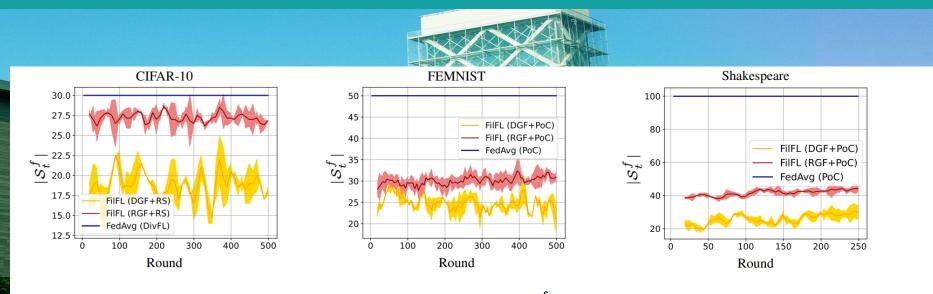


Figure 5: The number of filtered-in clients, denoted as $|\mathcal{S}_t^f|$, for FilFL (FedAvg with χ GF), over the rounds in different settings of CIFAR-10, FEMNIST, and Shakespeare datasets, with available clients n being 30, 50, and 100, respectively. For FedAvg without filtering, we consider \mathcal{S}_t^f to be equal to \mathcal{S}_t .

Approximation Ratio

Approximation Ratio. Fig. 6 shows the approximation ratios of both χ GF versions compared to the optimal filtering (OPT) on CIFAR-10 with N=200 and n=10, which we find by evaluating 2^n-1 combinations. We find that both χ GF versions achieve approximation ratios higher than 0.96, meaning that $\mathcal{R}(\mathcal{S}_t^f) \geq 0.96\mathcal{R}(OPT)$ over the multiple rounds. This indicates that greedy filtering identifies near-optimal combinations of clients.

Filtering Performance. The filtering performance can be measured by the improved FL performance and the higher approximation ratios. Since both versions of χ GF show similarly high ratios and improved FL performance, both can be considered effective for filtering.

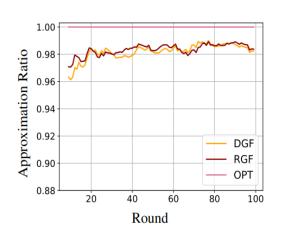
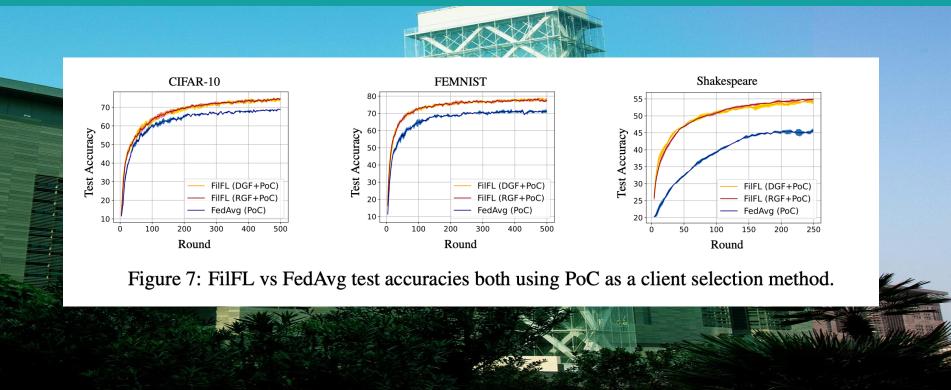


Figure 6: Approximation ratios of filtering objective solution on CIFAR-10 dataset.

Conclusion

References

Test Accuracies



Assumptions

Assumption 1. F_1, \dots, F_N are all L-smooth⁷.

Assumption 2. F_1, \dots, F_N are all μ -strongly convex⁸.

Assumption 3. Let ψ_t^k be sampled from the k-th client's local data uniformly at random. The variance of stochastic gradients in each client is bounded by σ_k^2 .

Assumption 4. The norms of the stochastic gradients are uniformly bounded by G^{10} .

Assumption 5. Statistical heterogeneity defined as $F^* - \sum_{k \in [N]} p_k F_k^*$ is bounded, where $F^* := \min_{\mathbf{w}} F(\mathbf{w})$ and $F_k^* := \min_{\mathbf{v}} F_k(\mathbf{v})$.

Assumption 6. Assume A_t contains a subset of K indices randomly selected with replacement according to the sampling probabilities p_1, \dots, p_N , with simple averaging for aggregation 11 .