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Solution: Introduce client filtering in FL

Filtering
Algorithm
L

Filtering Objective. Our filtering objective is to find a subset of clients Stf that approximates a
solution to the following combinatorial maximization problem:
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where C is a sufficiently large constant, such that R(S) is positive, w¥ is the weight of the k™ client
in round ¢, and F”(w) £ L Z;"’zl ¢ (w;z;) as the loss on the server-held public dataset P, which
has m training data: x1,z2, -+ , Tpm,.
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FilFL sensitivity to Hyperparameters
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— Figure 4: FilFL (FedAvg with DGF) sensitivity to public dataset size m on Shakespeare dataset with
=8 PoC for client selectlon N =143,n = 100, K = 10, and h =5.
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Figure 13: FilFL (FedAvg + xGF + PoC) sensitivity to periodicity A




Filtering Behavior
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Figure 5: The number of filtered-in clients, denoted as |8tf |, for FilFL (FedAvg with xGF), over the
rounds in different settings of CIFAR-10, FEMNIST, and Shakespeare datasets, with available clients

n being 30, 50, and 100, respectively. For FedAvg without filtering, we consider S{ to be equal to S;.




Approximation Ratio

Approxnmatlon Ratlo F1g 6 shows the approximation ratlos
of both YGF versions compared to the optimal filtering (OPT)

on CIFAR-10 with N = 200 and n = 10, which we find by o VRTINS
evaluating 2" — 1 combinations. We find that both yGF ver-
sions achieve approximation ratios higher than 0.96, meaning that

R(S]) > 0.96R(OPT) over the multiple rounds. This indicates b0 _ ket
that greedy filtering identifies near-optimal combinations of clients. - il
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Filtering Performance. The filtering performance can be measured Round

by the improved FL performance and the higher approximation ratios. ; 6 A imati i
Since both versions of YGF show similarly high ratios and improved ti;gsu; ﬁl.terirll) gp f)(;));::r(r:ltzilvleogoﬁ-
FL performance, both can be considered effective for filtering. tion on CIFAR-10 dataset.




We proposed client filtering as a promising té&mmque to optimize client
participation and training in FL. | ’“‘TF
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Test Accuracies
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Figure 7: FilFL vs FedAvg test accuracies both using PoC as a client selection method.




Assumptions

Assumption 1. F,--- , F are all L-smooth7.
Assumption 2. F,--- , Fy are all y-strongly convex®.

Assumption 3. Let gbt be sampled from the k-th client’s local data uniformly at random. The
variance of stochastic gradients in each client is bounded® by 2.

Assumption 4. The norms of the stochastic gradients are uniformly bounded by G'°.

Assumption 5. Statistical heterogeneity defined as F* — ke[N] prFy is bounded, where F* 1=
miny, F(w) and F}! := miny, Fj(v).

Assumption 6. Assume A; contains a subset of K indices randomly selected with replacement
according to the sampling probabilities p1, - - - , pn, With szmple averaglng for aggregatzon 1,




