Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
education [2019/05/27 12:14]
fablpd
education [2019/05/28 14:41]
rouault Removed Sebastien for robust ML project
Line 33: Line 33:
   * **[[Distributed ML|Distributed Machine Learning]]**:​ contact [[http://​people.epfl.ch/​georgios.damaskinos|Georgios Damaskinos]] for more information.   * **[[Distributed ML|Distributed Machine Learning]]**:​ contact [[http://​people.epfl.ch/​georgios.damaskinos|Georgios Damaskinos]] for more information.
  
-  * **Robust Distributed Machine Learning**: With the proliferation of big datasets and models, Machine Learning is becoming distributed. Following the standard parameter server model, the learning phase is taken by two categories of machines: parameter servers and workers. Any of these machines could behave arbitrarily (i.e., said Byzantine) affecting the model convergence in the learning phase. Our goal in this project is to build a system that is robust against Byzantine behavior of both parameter server and workers. Our first prototype, AggregaThor(https://​www.sysml.cc/​doc/​2019/​54.pdf),​ describes the first scalable robust Machine Learning framework. It fixed a severe vulnerability in TensorFlow and it showed how to make TensorFlow even faster, while robust. Contact [[https://​people.epfl.ch/​arsany.guirguis|Arsany Guirguis]] or [[https://​people.epfl.ch/​sebastien.rouault|Sébastien Rouault]] for more information.+  * **Robust Distributed Machine Learning**: With the proliferation of big datasets and models, Machine Learning is becoming distributed. Following the standard parameter server model, the learning phase is taken by two categories of machines: parameter servers and workers. Any of these machines could behave arbitrarily (i.e., said Byzantine) affecting the model convergence in the learning phase. Our goal in this project is to build a system that is robust against Byzantine behavior of both parameter server and workers. Our first prototype, AggregaThor(https://​www.sysml.cc/​doc/​2019/​54.pdf),​ describes the first scalable robust Machine Learning framework. It fixed a severe vulnerability in TensorFlow and it showed how to make TensorFlow even faster, while robust. Contact [[https://​people.epfl.ch/​arsany.guirguis|Arsany Guirguis]] for more information.
  
   * **Stochastic gradient: (artificial) reduction of the ratio variance/​norm for adversarial distributed SGD**: One computationally-efficient and non-intrusive line of defense for adversarial distributed SGD (e.g. 1 parameter server distributing the gradient estimation to several, possibly adversarial workers) relies on the honest workers to send back gradient estimations with sufficiently low variance; assumption which is sometimes hard to satisfy in practice. One solution could be to (drastically) increase the batch-size at the workers, but doing so may as well defeat the very purpose of distributing the computation. \\ In this project, we propose two approaches that you can choose to explore (also you may propose a different approach) to (artificially) reduce the ratio variance/​norm of the stochastic gradients, while keeping the benefits of the distribution. The first proposed approach, speculative,​ boils down to "​intelligent"​ coordinate selection. The second makes use of some kind of "​momentum"​ at the workers. \\ [1] [[https://​papers.nips.cc/​paper/​6617-machine-learning-with-adversaries-byzantine-tolerant-gradient-descent|"​Machine Learning with Adversaries:​ Byzantine Tolerant Gradient Descent"​ ]]  \\ [2] [[https://​arxiv.org/​abs/​1610.05492|"​Federated Learning: Strategies for Improving Communication Efficiency"​]] \\ Contact ​ [[https://​people.epfl.ch/​sebastien.rouault|Sébastien Rouault]] for more information.   * **Stochastic gradient: (artificial) reduction of the ratio variance/​norm for adversarial distributed SGD**: One computationally-efficient and non-intrusive line of defense for adversarial distributed SGD (e.g. 1 parameter server distributing the gradient estimation to several, possibly adversarial workers) relies on the honest workers to send back gradient estimations with sufficiently low variance; assumption which is sometimes hard to satisfy in practice. One solution could be to (drastically) increase the batch-size at the workers, but doing so may as well defeat the very purpose of distributing the computation. \\ In this project, we propose two approaches that you can choose to explore (also you may propose a different approach) to (artificially) reduce the ratio variance/​norm of the stochastic gradients, while keeping the benefits of the distribution. The first proposed approach, speculative,​ boils down to "​intelligent"​ coordinate selection. The second makes use of some kind of "​momentum"​ at the workers. \\ [1] [[https://​papers.nips.cc/​paper/​6617-machine-learning-with-adversaries-byzantine-tolerant-gradient-descent|"​Machine Learning with Adversaries:​ Byzantine Tolerant Gradient Descent"​ ]]  \\ [2] [[https://​arxiv.org/​abs/​1610.05492|"​Federated Learning: Strategies for Improving Communication Efficiency"​]] \\ Contact ​ [[https://​people.epfl.ch/​sebastien.rouault|Sébastien Rouault]] for more information.